Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009972917> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3009972917 abstract "The ability to quantify complex relationships within multivariate time series is a key component of modelling many physical systems, from the climate to brains and other biophysical phenomena. Unfortunately, even testing the significance of simple dependence measures, such as Pearson correlation, is complicated by altered sampling properties when autocorrelation is present in the individual time series. Moreover, it has been recently established that commonly used multivariate dependence measures---such as Granger causality---can produce substantially inaccurate results when applying classical hypothesis-testing procedures to digitally-filtered time series. Here, we suggest that the digital filtering-induced bias in Granger causality is an effect of autocorrelation, and we present a principled statistical framework for the hypothesis testing of a large family of linear-dependence measures between multiple autocorrelated time series. Our approach unifies the theoretical foundations established by Bartlett and others on variance estimators for autocorrelated signals with the more intricate multivariate measures of linear dependence. Specifically, we derive the sampling distributions and subsequent hypothesis tests for any measure that can be decomposed into terms that involve independent partial correlations, which we show includes Granger causality and mutual information under a multivariate linear-Gaussian model. In doing so, we provide the first exact tests for inferring linear dependence between vector autoregressive processes with limited data. Using numerical simulations and brain-imaging datasets, we demonstrate that our newly developed tests maintain the expected false-positive rate (FPR) with minimally-sufficient samples, while the classical log-likelihood ratio tests can yield an unbounded FPR depending on the parameters chosen." @default.
- W3009972917 created "2020-03-13" @default.
- W3009972917 creator A5002087412 @default.
- W3009972917 creator A5009545282 @default.
- W3009972917 creator A5010988142 @default.
- W3009972917 creator A5073637763 @default.
- W3009972917 creator A5087949323 @default.
- W3009972917 date "2020-03-09" @default.
- W3009972917 modified "2023-09-27" @default.
- W3009972917 title "Exact Inference of Linear Dependence Between Multiple Autocorrelated Time Series" @default.
- W3009972917 hasPublicationYear "2020" @default.
- W3009972917 type Work @default.
- W3009972917 sameAs 3009972917 @default.
- W3009972917 citedByCount "1" @default.
- W3009972917 countsByYear W30099729172020 @default.
- W3009972917 crossrefType "posted-content" @default.
- W3009972917 hasAuthorship W3009972917A5002087412 @default.
- W3009972917 hasAuthorship W3009972917A5009545282 @default.
- W3009972917 hasAuthorship W3009972917A5010988142 @default.
- W3009972917 hasAuthorship W3009972917A5073637763 @default.
- W3009972917 hasAuthorship W3009972917A5087949323 @default.
- W3009972917 hasConcept C105795698 @default.
- W3009972917 hasConcept C106131492 @default.
- W3009972917 hasConcept C129824826 @default.
- W3009972917 hasConcept C140779682 @default.
- W3009972917 hasConcept C143724316 @default.
- W3009972917 hasConcept C149782125 @default.
- W3009972917 hasConcept C151730666 @default.
- W3009972917 hasConcept C159877910 @default.
- W3009972917 hasConcept C161584116 @default.
- W3009972917 hasConcept C185429906 @default.
- W3009972917 hasConcept C31972630 @default.
- W3009972917 hasConcept C33923547 @default.
- W3009972917 hasConcept C41008148 @default.
- W3009972917 hasConcept C5297727 @default.
- W3009972917 hasConcept C86803240 @default.
- W3009972917 hasConcept C87007009 @default.
- W3009972917 hasConceptScore W3009972917C105795698 @default.
- W3009972917 hasConceptScore W3009972917C106131492 @default.
- W3009972917 hasConceptScore W3009972917C129824826 @default.
- W3009972917 hasConceptScore W3009972917C140779682 @default.
- W3009972917 hasConceptScore W3009972917C143724316 @default.
- W3009972917 hasConceptScore W3009972917C149782125 @default.
- W3009972917 hasConceptScore W3009972917C151730666 @default.
- W3009972917 hasConceptScore W3009972917C159877910 @default.
- W3009972917 hasConceptScore W3009972917C161584116 @default.
- W3009972917 hasConceptScore W3009972917C185429906 @default.
- W3009972917 hasConceptScore W3009972917C31972630 @default.
- W3009972917 hasConceptScore W3009972917C33923547 @default.
- W3009972917 hasConceptScore W3009972917C41008148 @default.
- W3009972917 hasConceptScore W3009972917C5297727 @default.
- W3009972917 hasConceptScore W3009972917C86803240 @default.
- W3009972917 hasConceptScore W3009972917C87007009 @default.
- W3009972917 hasLocation W30099729171 @default.
- W3009972917 hasOpenAccess W3009972917 @default.
- W3009972917 hasPrimaryLocation W30099729171 @default.
- W3009972917 hasRelatedWork W1581539483 @default.
- W3009972917 hasRelatedWork W2025161033 @default.
- W3009972917 hasRelatedWork W2029924515 @default.
- W3009972917 hasRelatedWork W2038329979 @default.
- W3009972917 hasRelatedWork W2107372373 @default.
- W3009972917 hasRelatedWork W2166252238 @default.
- W3009972917 hasRelatedWork W2189732805 @default.
- W3009972917 hasRelatedWork W2619161176 @default.
- W3009972917 hasRelatedWork W2765329220 @default.
- W3009972917 hasRelatedWork W2778341419 @default.
- W3009972917 hasRelatedWork W2948153723 @default.
- W3009972917 hasRelatedWork W3006877105 @default.
- W3009972917 hasRelatedWork W3122455557 @default.
- W3009972917 hasRelatedWork W3123546052 @default.
- W3009972917 hasRelatedWork W3124222690 @default.
- W3009972917 hasRelatedWork W3124317718 @default.
- W3009972917 hasRelatedWork W3126125676 @default.
- W3009972917 hasRelatedWork W3159033273 @default.
- W3009972917 hasRelatedWork W3206079693 @default.
- W3009972917 hasRelatedWork W3125460741 @default.
- W3009972917 isParatext "false" @default.
- W3009972917 isRetracted "false" @default.
- W3009972917 magId "3009972917" @default.
- W3009972917 workType "article" @default.