Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009996514> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3009996514 abstract "Abstract Background There is a need for high yield HIV testing strategies to reach epidemic control. We aimed to predict the HIV status of individuals based on socio-behavioural characteristics. Methods We analysed over 3,200 variables from the most recent Demographic Health Survey from 10 countries in East and Southern Africa. We trained four machine-learning algorithms and selected the best based on the f1 score. Training and validation were done on 80% of the data. The model was tested on the remaining 20% and on a left-out country which was rotated around. The best algorithm was retrained on the variables which were most predictive. We studied two scenarios: one aiming to identify 95% of people living with HIV (PLHIV) and one aiming to identify individuals with 95% or higher probability of being HIV positive. Findings Overall 55,151 males and 69,626 females were included. XGBoost performed best in predicting HIV with a mean f1 of 76·8% [95% confidence interval 76·0%-77·6%] for males and 78·8% [78·2%-79·4%] for females. Among the ten most predictive variables, nine were identical for both sexes: longitude, latitude and, altitude of place of residence, current age, age of most recent partner, total lifetime number of sexual partners, years lived in current place of residence, condom use during last intercourse and, wealth index. Model performance based on these variables decreased minimally. For the first scenario, 7 males and 5 females would need to be tested to identify one HIV positive person. For the second scenario, 4·2% of males and 6·2% of females would have been identified as high-risk population. Interpretation We were able to identify PLHIV and those at high risk of infection who may be offered pre-exposure prophylaxis and/or voluntary medical male circumcision. These findings can inform the implementation of HIV prevention and testing strategies. Funding Swiss National Science Foundation." @default.
- W3009996514 created "2020-03-13" @default.
- W3009996514 creator A5006097363 @default.
- W3009996514 creator A5011657274 @default.
- W3009996514 creator A5030113144 @default.
- W3009996514 creator A5061688822 @default.
- W3009996514 creator A5083165783 @default.
- W3009996514 creator A5090507080 @default.
- W3009996514 date "2020-01-27" @default.
- W3009996514 modified "2023-10-14" @default.
- W3009996514 title "Machine learning to identify socio-behavioural predictors of HIV positivity in East and Southern Africa" @default.
- W3009996514 cites W1964832167 @default.
- W3009996514 cites W1966716734 @default.
- W3009996514 cites W1993760127 @default.
- W3009996514 cites W2017037891 @default.
- W3009996514 cites W2052338330 @default.
- W3009996514 cites W2115098571 @default.
- W3009996514 cites W2122825543 @default.
- W3009996514 cites W2134301407 @default.
- W3009996514 cites W2156909104 @default.
- W3009996514 cites W2166163519 @default.
- W3009996514 cites W2289283950 @default.
- W3009996514 cites W2549666191 @default.
- W3009996514 cites W2586691160 @default.
- W3009996514 cites W2624160281 @default.
- W3009996514 cites W2801281961 @default.
- W3009996514 cites W2889877784 @default.
- W3009996514 cites W2904959555 @default.
- W3009996514 cites W2943838254 @default.
- W3009996514 cites W2953497237 @default.
- W3009996514 cites W2955970210 @default.
- W3009996514 cites W2976830149 @default.
- W3009996514 cites W2984856451 @default.
- W3009996514 cites W2985174788 @default.
- W3009996514 doi "https://doi.org/10.1101/2020.01.27.20018242" @default.
- W3009996514 hasPublicationYear "2020" @default.
- W3009996514 type Work @default.
- W3009996514 sameAs 3009996514 @default.
- W3009996514 citedByCount "4" @default.
- W3009996514 countsByYear W30099965142021 @default.
- W3009996514 countsByYear W30099965142022 @default.
- W3009996514 countsByYear W30099965142023 @default.
- W3009996514 crossrefType "posted-content" @default.
- W3009996514 hasAuthorship W3009996514A5006097363 @default.
- W3009996514 hasAuthorship W3009996514A5011657274 @default.
- W3009996514 hasAuthorship W3009996514A5030113144 @default.
- W3009996514 hasAuthorship W3009996514A5061688822 @default.
- W3009996514 hasAuthorship W3009996514A5083165783 @default.
- W3009996514 hasAuthorship W3009996514A5090507080 @default.
- W3009996514 hasBestOaLocation W30099965141 @default.
- W3009996514 hasConcept C118552586 @default.
- W3009996514 hasConcept C126322002 @default.
- W3009996514 hasConcept C144024400 @default.
- W3009996514 hasConcept C149923435 @default.
- W3009996514 hasConcept C203014093 @default.
- W3009996514 hasConcept C205649164 @default.
- W3009996514 hasConcept C27415008 @default.
- W3009996514 hasConcept C2776269092 @default.
- W3009996514 hasConcept C2776983459 @default.
- W3009996514 hasConcept C2779379456 @default.
- W3009996514 hasConcept C3013748606 @default.
- W3009996514 hasConcept C44249647 @default.
- W3009996514 hasConcept C71924100 @default.
- W3009996514 hasConcept C74909509 @default.
- W3009996514 hasConceptScore W3009996514C118552586 @default.
- W3009996514 hasConceptScore W3009996514C126322002 @default.
- W3009996514 hasConceptScore W3009996514C144024400 @default.
- W3009996514 hasConceptScore W3009996514C149923435 @default.
- W3009996514 hasConceptScore W3009996514C203014093 @default.
- W3009996514 hasConceptScore W3009996514C205649164 @default.
- W3009996514 hasConceptScore W3009996514C27415008 @default.
- W3009996514 hasConceptScore W3009996514C2776269092 @default.
- W3009996514 hasConceptScore W3009996514C2776983459 @default.
- W3009996514 hasConceptScore W3009996514C2779379456 @default.
- W3009996514 hasConceptScore W3009996514C3013748606 @default.
- W3009996514 hasConceptScore W3009996514C44249647 @default.
- W3009996514 hasConceptScore W3009996514C71924100 @default.
- W3009996514 hasConceptScore W3009996514C74909509 @default.
- W3009996514 hasLocation W30099965141 @default.
- W3009996514 hasOpenAccess W3009996514 @default.
- W3009996514 hasPrimaryLocation W30099965141 @default.
- W3009996514 hasRelatedWork W1972115575 @default.
- W3009996514 hasRelatedWork W1996894450 @default.
- W3009996514 hasRelatedWork W1998763108 @default.
- W3009996514 hasRelatedWork W2019140801 @default.
- W3009996514 hasRelatedWork W2044085493 @default.
- W3009996514 hasRelatedWork W2110805762 @default.
- W3009996514 hasRelatedWork W2121124093 @default.
- W3009996514 hasRelatedWork W2356179418 @default.
- W3009996514 hasRelatedWork W2368769890 @default.
- W3009996514 hasRelatedWork W2255144585 @default.
- W3009996514 isParatext "false" @default.
- W3009996514 isRetracted "false" @default.
- W3009996514 magId "3009996514" @default.
- W3009996514 workType "article" @default.