Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010027900> ?p ?o ?g. }
- W3010027900 endingPage "267" @default.
- W3010027900 startingPage "267" @default.
- W3010027900 abstract "One of the most crucial applications of radar-based precipitation nowcasting systems is the short-term forecast of extreme rainfall events such as flash floods and severe thunderstorms. While deep learning nowcasting models have recently shown to provide better overall skill than traditional echo extrapolation models, they suffer from conditional bias, sometimes reporting lower skill on extreme rain rates compared to Lagrangian persistence, due to excessive prediction smoothing. This work presents a novel method to improve deep learning prediction skills in particular for extreme rainfall regimes. The solution is based on model stacking, where a convolutional neural network is trained to combine an ensemble of deep learning models with orographic features, doubling the prediction skills with respect to the ensemble members and their average on extreme rain rates, and outperforming them on all rain regimes. The proposed architecture was applied on the recently released TAASRAD19 radar dataset: the initial ensemble was built by training four models with the same TrajGRU architecture over different rainfall thresholds on the first six years of the dataset, while the following three years of data were used for the stacked model. The stacked model can reach the same skill of Lagrangian persistence on extreme rain rates while retaining superior performance on lower rain regimes." @default.
- W3010027900 created "2020-03-13" @default.
- W3010027900 creator A5002415807 @default.
- W3010027900 creator A5013648849 @default.
- W3010027900 creator A5022788315 @default.
- W3010027900 creator A5060205720 @default.
- W3010027900 creator A5072609433 @default.
- W3010027900 creator A5090829168 @default.
- W3010027900 date "2020-03-07" @default.
- W3010027900 modified "2023-10-14" @default.
- W3010027900 title "Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events" @default.
- W3010027900 cites W1789155650 @default.
- W3010027900 cites W1966923336 @default.
- W3010027900 cites W1969962796 @default.
- W3010027900 cites W2014407290 @default.
- W3010027900 cites W2025227102 @default.
- W3010027900 cites W2027275927 @default.
- W3010027900 cites W2037301244 @default.
- W3010027900 cites W2039910903 @default.
- W3010027900 cites W2045144288 @default.
- W3010027900 cites W2090217777 @default.
- W3010027900 cites W2149763719 @default.
- W3010027900 cites W2173031829 @default.
- W3010027900 cites W2594928006 @default.
- W3010027900 cites W28412257 @default.
- W3010027900 cites W2890108942 @default.
- W3010027900 cites W2897854504 @default.
- W3010027900 cites W2910521640 @default.
- W3010027900 cites W2936479764 @default.
- W3010027900 cites W2943446701 @default.
- W3010027900 cites W2943522074 @default.
- W3010027900 cites W2944472092 @default.
- W3010027900 cites W2945086703 @default.
- W3010027900 cites W2963511153 @default.
- W3010027900 cites W2972780928 @default.
- W3010027900 cites W2978043874 @default.
- W3010027900 cites W2990103402 @default.
- W3010027900 cites W2999831675 @default.
- W3010027900 cites W4212883601 @default.
- W3010027900 cites W4233056867 @default.
- W3010027900 doi "https://doi.org/10.3390/atmos11030267" @default.
- W3010027900 hasPublicationYear "2020" @default.
- W3010027900 type Work @default.
- W3010027900 sameAs 3010027900 @default.
- W3010027900 citedByCount "37" @default.
- W3010027900 countsByYear W30100279002020 @default.
- W3010027900 countsByYear W30100279002021 @default.
- W3010027900 countsByYear W30100279002022 @default.
- W3010027900 countsByYear W30100279002023 @default.
- W3010027900 crossrefType "journal-article" @default.
- W3010027900 hasAuthorship W3010027900A5002415807 @default.
- W3010027900 hasAuthorship W3010027900A5013648849 @default.
- W3010027900 hasAuthorship W3010027900A5022788315 @default.
- W3010027900 hasAuthorship W3010027900A5060205720 @default.
- W3010027900 hasAuthorship W3010027900A5072609433 @default.
- W3010027900 hasAuthorship W3010027900A5090829168 @default.
- W3010027900 hasBestOaLocation W30100279001 @default.
- W3010027900 hasConcept C105795698 @default.
- W3010027900 hasConcept C107054158 @default.
- W3010027900 hasConcept C108583219 @default.
- W3010027900 hasConcept C119857082 @default.
- W3010027900 hasConcept C127313418 @default.
- W3010027900 hasConcept C132459708 @default.
- W3010027900 hasConcept C153294291 @default.
- W3010027900 hasConcept C154945302 @default.
- W3010027900 hasConcept C170061395 @default.
- W3010027900 hasConcept C194507410 @default.
- W3010027900 hasConcept C205649164 @default.
- W3010027900 hasConcept C2781013037 @default.
- W3010027900 hasConcept C33923547 @default.
- W3010027900 hasConcept C39432304 @default.
- W3010027900 hasConcept C41008148 @default.
- W3010027900 hasConcept C49204034 @default.
- W3010027900 hasConcept C554190296 @default.
- W3010027900 hasConcept C76155785 @default.
- W3010027900 hasConceptScore W3010027900C105795698 @default.
- W3010027900 hasConceptScore W3010027900C107054158 @default.
- W3010027900 hasConceptScore W3010027900C108583219 @default.
- W3010027900 hasConceptScore W3010027900C119857082 @default.
- W3010027900 hasConceptScore W3010027900C127313418 @default.
- W3010027900 hasConceptScore W3010027900C132459708 @default.
- W3010027900 hasConceptScore W3010027900C153294291 @default.
- W3010027900 hasConceptScore W3010027900C154945302 @default.
- W3010027900 hasConceptScore W3010027900C170061395 @default.
- W3010027900 hasConceptScore W3010027900C194507410 @default.
- W3010027900 hasConceptScore W3010027900C205649164 @default.
- W3010027900 hasConceptScore W3010027900C2781013037 @default.
- W3010027900 hasConceptScore W3010027900C33923547 @default.
- W3010027900 hasConceptScore W3010027900C39432304 @default.
- W3010027900 hasConceptScore W3010027900C41008148 @default.
- W3010027900 hasConceptScore W3010027900C49204034 @default.
- W3010027900 hasConceptScore W3010027900C554190296 @default.
- W3010027900 hasConceptScore W3010027900C76155785 @default.
- W3010027900 hasIssue "3" @default.
- W3010027900 hasLocation W30100279001 @default.
- W3010027900 hasLocation W30100279002 @default.
- W3010027900 hasLocation W30100279003 @default.
- W3010027900 hasOpenAccess W3010027900 @default.