Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010040433> ?p ?o ?g. }
- W3010040433 endingPage "44110" @default.
- W3010040433 startingPage "44100" @default.
- W3010040433 abstract "Feature selection and feature transformation are the two main approaches to reduce dimensionality, and they are often presented separately. In this study, a novel robust and efficient feature selection method, called FS-VLDA-L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> (feature selection based on variant of linear discriminant analysis and L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm), is proposed by combining a new variant of linear discriminant analysis and L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> sparsity regularization. Here, feature transformation and feature selection are integrated into a unified optimization objective. To obtain significant discriminative power between classes, all the data in the same class are expected to be regressed to a single vector, and the important task is to explore a transformation matrix such that the squared regression error is minimized. Therefore, we derive a new discriminant analysis from a novel view of least squares regression. In addition, we impose row sparsity on the transformation matrix through L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm regularized term to achieve feature selection. Consequently, the most discriminative features are selected, simultaneously eliminating the redundant ones. To address the L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm based optimization problem, we design a new efficient iterative re-weighted algorithm and prove its convergence. Extensive experimental results on four well-known datasets demonstrate the performance of our feature selection method." @default.
- W3010040433 created "2020-03-13" @default.
- W3010040433 creator A5003222421 @default.
- W3010040433 creator A5023363049 @default.
- W3010040433 creator A5050593872 @default.
- W3010040433 creator A5063701397 @default.
- W3010040433 date "2020-01-01" @default.
- W3010040433 modified "2023-10-06" @default.
- W3010040433 title "Robust and Efficient Linear Discriminant Analysis With <i>L</i> <sub>2,1</sub>-Norm for Feature Selection" @default.
- W3010040433 cites W1166921479 @default.
- W3010040433 cites W1500895378 @default.
- W3010040433 cites W1608549042 @default.
- W3010040433 cites W1703245085 @default.
- W3010040433 cites W1978372964 @default.
- W3010040433 cites W1979049594 @default.
- W3010040433 cites W2004544971 @default.
- W3010040433 cites W2010379776 @default.
- W3010040433 cites W2012961725 @default.
- W3010040433 cites W2017337590 @default.
- W3010040433 cites W2039339078 @default.
- W3010040433 cites W2041891835 @default.
- W3010040433 cites W2043080228 @default.
- W3010040433 cites W2049365101 @default.
- W3010040433 cites W2056201402 @default.
- W3010040433 cites W2076363162 @default.
- W3010040433 cites W2084028080 @default.
- W3010040433 cites W2088349130 @default.
- W3010040433 cites W2089222496 @default.
- W3010040433 cites W2100383651 @default.
- W3010040433 cites W2120000263 @default.
- W3010040433 cites W2121647436 @default.
- W3010040433 cites W2127646322 @default.
- W3010040433 cites W2128729667 @default.
- W3010040433 cites W2128873747 @default.
- W3010040433 cites W2133538634 @default.
- W3010040433 cites W2134665125 @default.
- W3010040433 cites W2135046866 @default.
- W3010040433 cites W2143030432 @default.
- W3010040433 cites W2148232185 @default.
- W3010040433 cites W2151416140 @default.
- W3010040433 cites W2154053567 @default.
- W3010040433 cites W2158933803 @default.
- W3010040433 cites W2171263752 @default.
- W3010040433 cites W2257217404 @default.
- W3010040433 cites W2277202671 @default.
- W3010040433 cites W2346848267 @default.
- W3010040433 cites W2464913182 @default.
- W3010040433 cites W2587990764 @default.
- W3010040433 cites W2771885995 @default.
- W3010040433 cites W2793931619 @default.
- W3010040433 cites W2795017224 @default.
- W3010040433 cites W2808340291 @default.
- W3010040433 cites W2904923193 @default.
- W3010040433 cites W2904965361 @default.
- W3010040433 cites W2994840989 @default.
- W3010040433 cites W576428146 @default.
- W3010040433 cites W745184511 @default.
- W3010040433 doi "https://doi.org/10.1109/access.2020.2978287" @default.
- W3010040433 hasPublicationYear "2020" @default.
- W3010040433 type Work @default.
- W3010040433 sameAs 3010040433 @default.
- W3010040433 citedByCount "8" @default.
- W3010040433 countsByYear W30100404332020 @default.
- W3010040433 countsByYear W30100404332021 @default.
- W3010040433 countsByYear W30100404332022 @default.
- W3010040433 countsByYear W30100404332023 @default.
- W3010040433 crossrefType "journal-article" @default.
- W3010040433 hasAuthorship W3010040433A5003222421 @default.
- W3010040433 hasAuthorship W3010040433A5023363049 @default.
- W3010040433 hasAuthorship W3010040433A5050593872 @default.
- W3010040433 hasAuthorship W3010040433A5063701397 @default.
- W3010040433 hasBestOaLocation W30100404331 @default.
- W3010040433 hasConcept C111030470 @default.
- W3010040433 hasConcept C148483581 @default.
- W3010040433 hasConcept C153180895 @default.
- W3010040433 hasConcept C154945302 @default.
- W3010040433 hasConcept C17744445 @default.
- W3010040433 hasConcept C191795146 @default.
- W3010040433 hasConcept C199539241 @default.
- W3010040433 hasConcept C33923547 @default.
- W3010040433 hasConcept C41008148 @default.
- W3010040433 hasConcept C69738355 @default.
- W3010040433 hasConcept C78397625 @default.
- W3010040433 hasConcept C97931131 @default.
- W3010040433 hasConceptScore W3010040433C111030470 @default.
- W3010040433 hasConceptScore W3010040433C148483581 @default.
- W3010040433 hasConceptScore W3010040433C153180895 @default.
- W3010040433 hasConceptScore W3010040433C154945302 @default.
- W3010040433 hasConceptScore W3010040433C17744445 @default.
- W3010040433 hasConceptScore W3010040433C191795146 @default.
- W3010040433 hasConceptScore W3010040433C199539241 @default.
- W3010040433 hasConceptScore W3010040433C33923547 @default.
- W3010040433 hasConceptScore W3010040433C41008148 @default.
- W3010040433 hasConceptScore W3010040433C69738355 @default.
- W3010040433 hasConceptScore W3010040433C78397625 @default.
- W3010040433 hasConceptScore W3010040433C97931131 @default.
- W3010040433 hasFunder F4320325205 @default.
- W3010040433 hasFunder F4320327776 @default.