Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010063904> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3010063904 abstract "Efficient Market Hypothesis (EMH) is the cornerstone of the modern financial theory and it states that it is impossible to predict the price of any stock using any trend, fundamental or technical analysis. Stock trading is one of the most important activities in the world of finance. Stock price prediction has been an age-old problem and many researchers from academia and business have tried to solve it using many techniques ranging from basic statistics to machine learning using relevant information such as news sentiment and historical prices. Even though some studies claim to get prediction accuracy higher than a random guess, they consider nothing but a proper selection of stocks and time interval in the experiments. In this paper, a novel approach is proposed using graph theory. This approach leverages Spatio-temporal relationship information between different stocks by modeling the stock market as a complex network. This graph-based approach is used along with two techniques to create two hybrid models. Two different types of graphs are constructed, one from the correlation of the historical stock prices and the other is a causation-based graph constructed from the financial news mention of that stock over a period. The first hybrid model leverages deep learning convolutional neural networks and the second model leverages a traditional machine learning approach. These models are compared along with other statistical models and the advantages and disadvantages of graph-based models are discussed. Our experiments conclude that both graph-based approaches perform better than the traditional approaches since they leverage structural information while building the prediction model." @default.
- W3010063904 created "2020-03-13" @default.
- W3010063904 creator A5003901513 @default.
- W3010063904 creator A5013634305 @default.
- W3010063904 creator A5040358451 @default.
- W3010063904 creator A5084228235 @default.
- W3010063904 date "2020-01-12" @default.
- W3010063904 modified "2023-10-18" @default.
- W3010063904 title "Stock Market Prediction Using Ensemble of Graph Theory, Machine Learning and Deep Learning Models" @default.
- W3010063904 cites W1999934300 @default.
- W3010063904 cites W2012079387 @default.
- W3010063904 cites W2032170121 @default.
- W3010063904 cites W2092281935 @default.
- W3010063904 cites W2131681506 @default.
- W3010063904 cites W2138144286 @default.
- W3010063904 cites W2176771782 @default.
- W3010063904 cites W2301106258 @default.
- W3010063904 cites W2501851833 @default.
- W3010063904 cites W2895928754 @default.
- W3010063904 cites W3122714990 @default.
- W3010063904 doi "https://doi.org/10.1145/3378936.3378972" @default.
- W3010063904 hasPublicationYear "2020" @default.
- W3010063904 type Work @default.
- W3010063904 sameAs 3010063904 @default.
- W3010063904 citedByCount "12" @default.
- W3010063904 countsByYear W30100639042020 @default.
- W3010063904 countsByYear W30100639042021 @default.
- W3010063904 countsByYear W30100639042022 @default.
- W3010063904 countsByYear W30100639042023 @default.
- W3010063904 crossrefType "proceedings-article" @default.
- W3010063904 hasAuthorship W3010063904A5003901513 @default.
- W3010063904 hasAuthorship W3010063904A5013634305 @default.
- W3010063904 hasAuthorship W3010063904A5040358451 @default.
- W3010063904 hasAuthorship W3010063904A5084228235 @default.
- W3010063904 hasBestOaLocation W30100639042 @default.
- W3010063904 hasConcept C10138342 @default.
- W3010063904 hasConcept C119857082 @default.
- W3010063904 hasConcept C127413603 @default.
- W3010063904 hasConcept C132525143 @default.
- W3010063904 hasConcept C149782125 @default.
- W3010063904 hasConcept C151730666 @default.
- W3010063904 hasConcept C154945302 @default.
- W3010063904 hasConcept C162324750 @default.
- W3010063904 hasConcept C19244329 @default.
- W3010063904 hasConcept C204036174 @default.
- W3010063904 hasConcept C2780299701 @default.
- W3010063904 hasConcept C2780762169 @default.
- W3010063904 hasConcept C29368100 @default.
- W3010063904 hasConcept C41008148 @default.
- W3010063904 hasConcept C78519656 @default.
- W3010063904 hasConcept C80444323 @default.
- W3010063904 hasConcept C86803240 @default.
- W3010063904 hasConceptScore W3010063904C10138342 @default.
- W3010063904 hasConceptScore W3010063904C119857082 @default.
- W3010063904 hasConceptScore W3010063904C127413603 @default.
- W3010063904 hasConceptScore W3010063904C132525143 @default.
- W3010063904 hasConceptScore W3010063904C149782125 @default.
- W3010063904 hasConceptScore W3010063904C151730666 @default.
- W3010063904 hasConceptScore W3010063904C154945302 @default.
- W3010063904 hasConceptScore W3010063904C162324750 @default.
- W3010063904 hasConceptScore W3010063904C19244329 @default.
- W3010063904 hasConceptScore W3010063904C204036174 @default.
- W3010063904 hasConceptScore W3010063904C2780299701 @default.
- W3010063904 hasConceptScore W3010063904C2780762169 @default.
- W3010063904 hasConceptScore W3010063904C29368100 @default.
- W3010063904 hasConceptScore W3010063904C41008148 @default.
- W3010063904 hasConceptScore W3010063904C78519656 @default.
- W3010063904 hasConceptScore W3010063904C80444323 @default.
- W3010063904 hasConceptScore W3010063904C86803240 @default.
- W3010063904 hasLocation W30100639041 @default.
- W3010063904 hasLocation W30100639042 @default.
- W3010063904 hasOpenAccess W3010063904 @default.
- W3010063904 hasPrimaryLocation W30100639041 @default.
- W3010063904 hasRelatedWork W1567992464 @default.
- W3010063904 hasRelatedWork W1963569934 @default.
- W3010063904 hasRelatedWork W2031104990 @default.
- W3010063904 hasRelatedWork W2148192975 @default.
- W3010063904 hasRelatedWork W2178542991 @default.
- W3010063904 hasRelatedWork W2253749890 @default.
- W3010063904 hasRelatedWork W2355188832 @default.
- W3010063904 hasRelatedWork W3099721702 @default.
- W3010063904 hasRelatedWork W4380669258 @default.
- W3010063904 hasRelatedWork W4384432118 @default.
- W3010063904 isParatext "false" @default.
- W3010063904 isRetracted "false" @default.
- W3010063904 magId "3010063904" @default.
- W3010063904 workType "article" @default.