Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010096987> ?p ?o ?g. }
- W3010096987 endingPage "e17110" @default.
- W3010096987 startingPage "e17110" @default.
- W3010096987 abstract "Background Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. Objective We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Methods Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Results Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Conclusions Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy." @default.
- W3010096987 created "2020-03-13" @default.
- W3010096987 creator A5000036541 @default.
- W3010096987 creator A5003043937 @default.
- W3010096987 creator A5024822081 @default.
- W3010096987 creator A5031350933 @default.
- W3010096987 creator A5042171548 @default.
- W3010096987 creator A5042264697 @default.
- W3010096987 creator A5075329157 @default.
- W3010096987 creator A5080103470 @default.
- W3010096987 date "2020-03-23" @default.
- W3010096987 modified "2023-10-14" @default.
- W3010096987 title "Predicting Metabolic Syndrome With Machine Learning Models Using a Decision Tree Algorithm: Retrospective Cohort Study" @default.
- W3010096987 cites W1518653822 @default.
- W3010096987 cites W1564484746 @default.
- W3010096987 cites W1809873675 @default.
- W3010096987 cites W1889306855 @default.
- W3010096987 cites W1964695166 @default.
- W3010096987 cites W1984115557 @default.
- W3010096987 cites W1986975920 @default.
- W3010096987 cites W1991208598 @default.
- W3010096987 cites W1991426267 @default.
- W3010096987 cites W2002957303 @default.
- W3010096987 cites W2009167374 @default.
- W3010096987 cites W2018048740 @default.
- W3010096987 cites W2031385216 @default.
- W3010096987 cites W2032744185 @default.
- W3010096987 cites W2038429516 @default.
- W3010096987 cites W2045803758 @default.
- W3010096987 cites W2047638046 @default.
- W3010096987 cites W2062884568 @default.
- W3010096987 cites W2080422995 @default.
- W3010096987 cites W2090077439 @default.
- W3010096987 cites W2097686533 @default.
- W3010096987 cites W2098323046 @default.
- W3010096987 cites W2104890527 @default.
- W3010096987 cites W2107732097 @default.
- W3010096987 cites W2111335059 @default.
- W3010096987 cites W2113979297 @default.
- W3010096987 cites W2123998733 @default.
- W3010096987 cites W2126544953 @default.
- W3010096987 cites W2128420091 @default.
- W3010096987 cites W2130717716 @default.
- W3010096987 cites W2143945764 @default.
- W3010096987 cites W2145732657 @default.
- W3010096987 cites W2153476503 @default.
- W3010096987 cites W2155971620 @default.
- W3010096987 cites W2158698691 @default.
- W3010096987 cites W2161062919 @default.
- W3010096987 cites W2167990265 @default.
- W3010096987 cites W2205525005 @default.
- W3010096987 cites W2337535033 @default.
- W3010096987 cites W2341746096 @default.
- W3010096987 cites W2403970922 @default.
- W3010096987 cites W2407788698 @default.
- W3010096987 cites W2496911238 @default.
- W3010096987 cites W2548368175 @default.
- W3010096987 cites W2590921856 @default.
- W3010096987 cites W2598212308 @default.
- W3010096987 cites W2607031541 @default.
- W3010096987 cites W2727650337 @default.
- W3010096987 cites W2751367256 @default.
- W3010096987 cites W2772577987 @default.
- W3010096987 cites W2789894922 @default.
- W3010096987 cites W2809572353 @default.
- W3010096987 cites W2809987777 @default.
- W3010096987 cites W2898133090 @default.
- W3010096987 cites W2908524400 @default.
- W3010096987 cites W2911964244 @default.
- W3010096987 cites W2938285755 @default.
- W3010096987 cites W2964315079 @default.
- W3010096987 cites W2982201445 @default.
- W3010096987 cites W4244695335 @default.
- W3010096987 doi "https://doi.org/10.2196/17110" @default.
- W3010096987 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7136841" @default.
- W3010096987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32202504" @default.
- W3010096987 hasPublicationYear "2020" @default.
- W3010096987 type Work @default.
- W3010096987 sameAs 3010096987 @default.
- W3010096987 citedByCount "25" @default.
- W3010096987 countsByYear W30100969872020 @default.
- W3010096987 countsByYear W30100969872021 @default.
- W3010096987 countsByYear W30100969872022 @default.
- W3010096987 countsByYear W30100969872023 @default.
- W3010096987 crossrefType "journal-article" @default.
- W3010096987 hasAuthorship W3010096987A5000036541 @default.
- W3010096987 hasAuthorship W3010096987A5003043937 @default.
- W3010096987 hasAuthorship W3010096987A5024822081 @default.
- W3010096987 hasAuthorship W3010096987A5031350933 @default.
- W3010096987 hasAuthorship W3010096987A5042171548 @default.
- W3010096987 hasAuthorship W3010096987A5042264697 @default.
- W3010096987 hasAuthorship W3010096987A5075329157 @default.
- W3010096987 hasAuthorship W3010096987A5080103470 @default.
- W3010096987 hasBestOaLocation W30100969871 @default.
- W3010096987 hasConcept C105795698 @default.
- W3010096987 hasConcept C11413529 @default.
- W3010096987 hasConcept C119857082 @default.
- W3010096987 hasConcept C126322002 @default.