Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010199089> ?p ?o ?g. }
- W3010199089 abstract "Recent advances in deep learning have had a methodological and practical impact on brain-computer interface research. Among the various deep network architectures, convolutional neural networks have been well suited for spatio-spectral-temporal electroencephalogram signal representation learning. Most of the existing CNN-based methods described in the literature extract features at a sequential level of abstraction with repetitive nonlinear operations and involve densely connected layers for classification. However, studies in neurophysiology have revealed that EEG signals carry information in different ranges of frequency components. To better reflect these multi-frequency properties in EEGs, we propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges and extracts relationships among electrodes, i.e., spatial representations, for subject intention/condition identification. Furthermore, by completely representing EEG signals with spatio-spectral-temporal information, the proposed method can be utilized for diverse paradigms in both active and passive BCIs, contrary to existing methods that are primarily focused on single-paradigm BCIs. To demonstrate the validity of our proposed method, we conducted experiments on various paradigms of active/passive BCI datasets. Our experimental results demonstrated that the proposed method achieved performance improvements when judged against comparable state-of-the-art methods. Additionally, we analyzed the proposed method using different techniques, such as PSD curves and relevance score inspection to validate the multi-scale EEG signal information capturing ability, activation pattern maps for investigating the learned spatial filters, and t-SNE plotting for visualizing represented features. Finally, we also demonstrated our method's application to real-world problems." @default.
- W3010199089 created "2020-03-13" @default.
- W3010199089 creator A5011812465 @default.
- W3010199089 creator A5016267517 @default.
- W3010199089 creator A5033720496 @default.
- W3010199089 creator A5056916145 @default.
- W3010199089 date "2020-03-01" @default.
- W3010199089 modified "2023-09-24" @default.
- W3010199089 title "Multi-Scale Neural network for EEG Representation Learning in BCI" @default.
- W3010199089 cites W1533861849 @default.
- W3010199089 cites W1556131344 @default.
- W3010199089 cites W1731081199 @default.
- W3010199089 cites W1799366690 @default.
- W3010199089 cites W1934184906 @default.
- W3010199089 cites W1983256092 @default.
- W3010199089 cites W2011402106 @default.
- W3010199089 cites W2017855408 @default.
- W3010199089 cites W2023709867 @default.
- W3010199089 cites W2099509424 @default.
- W3010199089 cites W2132360759 @default.
- W3010199089 cites W2138190513 @default.
- W3010199089 cites W2195388612 @default.
- W3010199089 cites W2338492816 @default.
- W3010199089 cites W2473930607 @default.
- W3010199089 cites W2498056627 @default.
- W3010199089 cites W2531409750 @default.
- W3010199089 cites W2558193840 @default.
- W3010199089 cites W2590420622 @default.
- W3010199089 cites W2604096629 @default.
- W3010199089 cites W2611482981 @default.
- W3010199089 cites W2741907166 @default.
- W3010199089 cites W2749957338 @default.
- W3010199089 cites W2789862225 @default.
- W3010199089 cites W2792724009 @default.
- W3010199089 cites W2883280128 @default.
- W3010199089 cites W2908578648 @default.
- W3010199089 cites W2912885887 @default.
- W3010199089 cites W2914314600 @default.
- W3010199089 cites W2921754499 @default.
- W3010199089 cites W2944170161 @default.
- W3010199089 cites W2950016433 @default.
- W3010199089 cites W2984356918 @default.
- W3010199089 cites W3094339988 @default.
- W3010199089 cites W3102455230 @default.
- W3010199089 cites W3124617164 @default.
- W3010199089 doi "https://doi.org/10.48550/arxiv.2003.02657" @default.
- W3010199089 hasPublicationYear "2020" @default.
- W3010199089 type Work @default.
- W3010199089 sameAs 3010199089 @default.
- W3010199089 citedByCount "0" @default.
- W3010199089 crossrefType "posted-content" @default.
- W3010199089 hasAuthorship W3010199089A5011812465 @default.
- W3010199089 hasAuthorship W3010199089A5016267517 @default.
- W3010199089 hasAuthorship W3010199089A5033720496 @default.
- W3010199089 hasAuthorship W3010199089A5056916145 @default.
- W3010199089 hasBestOaLocation W30101990891 @default.
- W3010199089 hasConcept C108583219 @default.
- W3010199089 hasConcept C111472728 @default.
- W3010199089 hasConcept C118552586 @default.
- W3010199089 hasConcept C119857082 @default.
- W3010199089 hasConcept C124304363 @default.
- W3010199089 hasConcept C138885662 @default.
- W3010199089 hasConcept C152478114 @default.
- W3010199089 hasConcept C153180895 @default.
- W3010199089 hasConcept C154945302 @default.
- W3010199089 hasConcept C15744967 @default.
- W3010199089 hasConcept C169760540 @default.
- W3010199089 hasConcept C173201364 @default.
- W3010199089 hasConcept C17744445 @default.
- W3010199089 hasConcept C199539241 @default.
- W3010199089 hasConcept C2776359362 @default.
- W3010199089 hasConcept C2776401178 @default.
- W3010199089 hasConcept C41008148 @default.
- W3010199089 hasConcept C41895202 @default.
- W3010199089 hasConcept C50644808 @default.
- W3010199089 hasConcept C522805319 @default.
- W3010199089 hasConcept C59404180 @default.
- W3010199089 hasConcept C81363708 @default.
- W3010199089 hasConcept C86803240 @default.
- W3010199089 hasConcept C94625758 @default.
- W3010199089 hasConceptScore W3010199089C108583219 @default.
- W3010199089 hasConceptScore W3010199089C111472728 @default.
- W3010199089 hasConceptScore W3010199089C118552586 @default.
- W3010199089 hasConceptScore W3010199089C119857082 @default.
- W3010199089 hasConceptScore W3010199089C124304363 @default.
- W3010199089 hasConceptScore W3010199089C138885662 @default.
- W3010199089 hasConceptScore W3010199089C152478114 @default.
- W3010199089 hasConceptScore W3010199089C153180895 @default.
- W3010199089 hasConceptScore W3010199089C154945302 @default.
- W3010199089 hasConceptScore W3010199089C15744967 @default.
- W3010199089 hasConceptScore W3010199089C169760540 @default.
- W3010199089 hasConceptScore W3010199089C173201364 @default.
- W3010199089 hasConceptScore W3010199089C17744445 @default.
- W3010199089 hasConceptScore W3010199089C199539241 @default.
- W3010199089 hasConceptScore W3010199089C2776359362 @default.
- W3010199089 hasConceptScore W3010199089C2776401178 @default.
- W3010199089 hasConceptScore W3010199089C41008148 @default.
- W3010199089 hasConceptScore W3010199089C41895202 @default.
- W3010199089 hasConceptScore W3010199089C50644808 @default.
- W3010199089 hasConceptScore W3010199089C522805319 @default.