Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010199993> ?p ?o ?g. }
- W3010199993 abstract "Semantic segmentation network is able to detect multi-scale traffic sign effectively. However, probabilities that different scale features participate in decision are equal in the network. In this work, we propose a local multi-scale attention module based on channel-attention, which extracts local features generated by dilated convolution and weights scale features. We demonstrate that adopting local multi-scale attention module on a semantic segmentation network achieves a better performance for locating multi-scale traffic signs than state-of-art convolutional networks by the experimental results on a Chinese traffic sign dataset." @default.
- W3010199993 created "2020-03-13" @default.
- W3010199993 creator A5010426520 @default.
- W3010199993 creator A5014158612 @default.
- W3010199993 creator A5060714978 @default.
- W3010199993 date "2019-10-01" @default.
- W3010199993 modified "2023-09-24" @default.
- W3010199993 title "Semantic Segmentation Network with Local Multi-Scale Attention for Locating Traffic Sign" @default.
- W3010199993 cites W1546771929 @default.
- W3010199993 cites W1686810756 @default.
- W3010199993 cites W1764806478 @default.
- W3010199993 cites W1901129140 @default.
- W3010199993 cites W1903029394 @default.
- W3010199993 cites W1973813615 @default.
- W3010199993 cites W2009105119 @default.
- W3010199993 cites W2032354522 @default.
- W3010199993 cites W2039510769 @default.
- W3010199993 cites W2052533453 @default.
- W3010199993 cites W2062471702 @default.
- W3010199993 cites W2097117768 @default.
- W3010199993 cites W2102605133 @default.
- W3010199993 cites W2109255472 @default.
- W3010199993 cites W2110591696 @default.
- W3010199993 cites W2116225936 @default.
- W3010199993 cites W2135268372 @default.
- W3010199993 cites W2163605009 @default.
- W3010199993 cites W2194775991 @default.
- W3010199993 cites W2412782625 @default.
- W3010199993 cites W2472350142 @default.
- W3010199993 cites W2559597482 @default.
- W3010199993 cites W2560023338 @default.
- W3010199993 cites W2565639579 @default.
- W3010199993 cites W2772989637 @default.
- W3010199993 cites W2962891704 @default.
- W3010199993 cites W2963420686 @default.
- W3010199993 cites W2963446712 @default.
- W3010199993 cites W2963542991 @default.
- W3010199993 cites W2963881378 @default.
- W3010199993 cites W2964308564 @default.
- W3010199993 cites W3097096317 @default.
- W3010199993 doi "https://doi.org/10.1109/icicta49267.2019.00080" @default.
- W3010199993 hasPublicationYear "2019" @default.
- W3010199993 type Work @default.
- W3010199993 sameAs 3010199993 @default.
- W3010199993 citedByCount "0" @default.
- W3010199993 crossrefType "proceedings-article" @default.
- W3010199993 hasAuthorship W3010199993A5010426520 @default.
- W3010199993 hasAuthorship W3010199993A5014158612 @default.
- W3010199993 hasAuthorship W3010199993A5060714978 @default.
- W3010199993 hasConcept C124101348 @default.
- W3010199993 hasConcept C127162648 @default.
- W3010199993 hasConcept C134306372 @default.
- W3010199993 hasConcept C139676723 @default.
- W3010199993 hasConcept C153180895 @default.
- W3010199993 hasConcept C154945302 @default.
- W3010199993 hasConcept C184337299 @default.
- W3010199993 hasConcept C199360897 @default.
- W3010199993 hasConcept C205649164 @default.
- W3010199993 hasConcept C2778755073 @default.
- W3010199993 hasConcept C2983860417 @default.
- W3010199993 hasConcept C31258907 @default.
- W3010199993 hasConcept C33923547 @default.
- W3010199993 hasConcept C41008148 @default.
- W3010199993 hasConcept C45347329 @default.
- W3010199993 hasConcept C50644808 @default.
- W3010199993 hasConcept C58640448 @default.
- W3010199993 hasConcept C6528762 @default.
- W3010199993 hasConcept C81363708 @default.
- W3010199993 hasConcept C89600930 @default.
- W3010199993 hasConceptScore W3010199993C124101348 @default.
- W3010199993 hasConceptScore W3010199993C127162648 @default.
- W3010199993 hasConceptScore W3010199993C134306372 @default.
- W3010199993 hasConceptScore W3010199993C139676723 @default.
- W3010199993 hasConceptScore W3010199993C153180895 @default.
- W3010199993 hasConceptScore W3010199993C154945302 @default.
- W3010199993 hasConceptScore W3010199993C184337299 @default.
- W3010199993 hasConceptScore W3010199993C199360897 @default.
- W3010199993 hasConceptScore W3010199993C205649164 @default.
- W3010199993 hasConceptScore W3010199993C2778755073 @default.
- W3010199993 hasConceptScore W3010199993C2983860417 @default.
- W3010199993 hasConceptScore W3010199993C31258907 @default.
- W3010199993 hasConceptScore W3010199993C33923547 @default.
- W3010199993 hasConceptScore W3010199993C41008148 @default.
- W3010199993 hasConceptScore W3010199993C45347329 @default.
- W3010199993 hasConceptScore W3010199993C50644808 @default.
- W3010199993 hasConceptScore W3010199993C58640448 @default.
- W3010199993 hasConceptScore W3010199993C6528762 @default.
- W3010199993 hasConceptScore W3010199993C81363708 @default.
- W3010199993 hasConceptScore W3010199993C89600930 @default.
- W3010199993 hasLocation W30101999931 @default.
- W3010199993 hasOpenAccess W3010199993 @default.
- W3010199993 hasPrimaryLocation W30101999931 @default.
- W3010199993 hasRelatedWork W12874744 @default.
- W3010199993 hasRelatedWork W13523948 @default.
- W3010199993 hasRelatedWork W14569654 @default.
- W3010199993 hasRelatedWork W3089489 @default.
- W3010199993 hasRelatedWork W3279675 @default.
- W3010199993 hasRelatedWork W3542719 @default.
- W3010199993 hasRelatedWork W446831 @default.
- W3010199993 hasRelatedWork W4771408 @default.