Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010241012> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3010241012 endingPage "45530" @default.
- W3010241012 startingPage "45523" @default.
- W3010241012 abstract "The microseismic monitoring signals which need to be determined in mines include those caused by both rock bursts and by blasting. The blasting signals must be separated from the microseismic signals in order to extract the information needed for the correct location of the source and for determining the blast mechanism. The use of a convolutional neural network (CNN) is a viable approach to extract these blast characteristic parameters automatically and to achieve the accuracy needed in the signal recognition. The Stockwell Transform (or S-Transform) has excellent two-dimensional time-frequency characteristics and thus to obtain the microseismic signal and blasting vibration signal separately, the microseismic signal has been converted in this work into a two-dimensional image format by use of the S-Transform, following which it is recognized by using the CNN. The sample data given in this paper are used for model training, where the training sample is an image containing three RGB color channels. The training time can be decreased by means of reducing the picture size and thus reducing the number of training steps used. The optimal combination of parameters can then be obtained after continuously updating the training parameters. When the image size is $180times140$ pixels, it has been shown that the test accuracy can reach 96.15% and that it is feasible to classify separately the blasting signal and the microseismic signal based on using the S-Transform and the CNN model architecture, where the training parameters were designed by synthesizing LeNet-5 and AlexNet." @default.
- W3010241012 created "2020-03-13" @default.
- W3010241012 creator A5007631634 @default.
- W3010241012 creator A5012080120 @default.
- W3010241012 creator A5060316855 @default.
- W3010241012 date "2020-01-01" @default.
- W3010241012 modified "2023-09-30" @default.
- W3010241012 title "Recognition of Microseismic and Blasting Signals in Mines Based on Convolutional Neural Network and Stockwell Transform" @default.
- W3010241012 cites W1498436455 @default.
- W3010241012 cites W1554576613 @default.
- W3010241012 cites W192764084 @default.
- W3010241012 cites W1979057819 @default.
- W3010241012 cites W1982247902 @default.
- W3010241012 cites W1986754283 @default.
- W3010241012 cites W2040870580 @default.
- W3010241012 cites W2100495367 @default.
- W3010241012 cites W2112796928 @default.
- W3010241012 cites W2130673803 @default.
- W3010241012 cites W2162770137 @default.
- W3010241012 cites W2217962917 @default.
- W3010241012 cites W2613390930 @default.
- W3010241012 cites W2615808098 @default.
- W3010241012 cites W2792365373 @default.
- W3010241012 cites W2912834795 @default.
- W3010241012 cites W4239510810 @default.
- W3010241012 doi "https://doi.org/10.1109/access.2020.2978392" @default.
- W3010241012 hasPublicationYear "2020" @default.
- W3010241012 type Work @default.
- W3010241012 sameAs 3010241012 @default.
- W3010241012 citedByCount "11" @default.
- W3010241012 countsByYear W30102410122020 @default.
- W3010241012 countsByYear W30102410122021 @default.
- W3010241012 countsByYear W30102410122022 @default.
- W3010241012 countsByYear W30102410122023 @default.
- W3010241012 crossrefType "journal-article" @default.
- W3010241012 hasAuthorship W3010241012A5007631634 @default.
- W3010241012 hasAuthorship W3010241012A5012080120 @default.
- W3010241012 hasAuthorship W3010241012A5060316855 @default.
- W3010241012 hasBestOaLocation W30102410121 @default.
- W3010241012 hasConcept C127313418 @default.
- W3010241012 hasConcept C153180895 @default.
- W3010241012 hasConcept C154945302 @default.
- W3010241012 hasConcept C165205528 @default.
- W3010241012 hasConcept C199360897 @default.
- W3010241012 hasConcept C2779843651 @default.
- W3010241012 hasConcept C28490314 @default.
- W3010241012 hasConcept C41008148 @default.
- W3010241012 hasConcept C50644808 @default.
- W3010241012 hasConcept C7266685 @default.
- W3010241012 hasConcept C81363708 @default.
- W3010241012 hasConcept C82990744 @default.
- W3010241012 hasConceptScore W3010241012C127313418 @default.
- W3010241012 hasConceptScore W3010241012C153180895 @default.
- W3010241012 hasConceptScore W3010241012C154945302 @default.
- W3010241012 hasConceptScore W3010241012C165205528 @default.
- W3010241012 hasConceptScore W3010241012C199360897 @default.
- W3010241012 hasConceptScore W3010241012C2779843651 @default.
- W3010241012 hasConceptScore W3010241012C28490314 @default.
- W3010241012 hasConceptScore W3010241012C41008148 @default.
- W3010241012 hasConceptScore W3010241012C50644808 @default.
- W3010241012 hasConceptScore W3010241012C7266685 @default.
- W3010241012 hasConceptScore W3010241012C81363708 @default.
- W3010241012 hasConceptScore W3010241012C82990744 @default.
- W3010241012 hasFunder F4320320005 @default.
- W3010241012 hasFunder F4320335777 @default.
- W3010241012 hasLocation W30102410121 @default.
- W3010241012 hasLocation W30102410122 @default.
- W3010241012 hasLocation W30102410123 @default.
- W3010241012 hasOpenAccess W3010241012 @default.
- W3010241012 hasPrimaryLocation W30102410121 @default.
- W3010241012 hasRelatedWork W2767651786 @default.
- W3010241012 hasRelatedWork W2774550181 @default.
- W3010241012 hasRelatedWork W2900273708 @default.
- W3010241012 hasRelatedWork W290554818 @default.
- W3010241012 hasRelatedWork W2912288872 @default.
- W3010241012 hasRelatedWork W2940661641 @default.
- W3010241012 hasRelatedWork W2954208830 @default.
- W3010241012 hasRelatedWork W3011861320 @default.
- W3010241012 hasRelatedWork W3181746755 @default.
- W3010241012 hasRelatedWork W4360995138 @default.
- W3010241012 hasVolume "8" @default.
- W3010241012 isParatext "false" @default.
- W3010241012 isRetracted "false" @default.
- W3010241012 magId "3010241012" @default.
- W3010241012 workType "article" @default.