Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010245316> ?p ?o ?g. }
- W3010245316 abstract "Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assumption of CPH model limits the prognostic performance. In this work, using transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients.The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in terms of concordance index and index of prediction accuracy, providing a better fit for patients' survival patterns.The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations of conventional survival models." @default.
- W3010245316 created "2020-03-13" @default.
- W3010245316 creator A5016377624 @default.
- W3010245316 creator A5027990022 @default.
- W3010245316 creator A5034208717 @default.
- W3010245316 creator A5043754484 @default.
- W3010245316 creator A5066630597 @default.
- W3010245316 creator A5074604408 @default.
- W3010245316 date "2020-02-03" @default.
- W3010245316 modified "2023-10-09" @default.
- W3010245316 title "CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging" @default.
- W3010245316 cites W1570622790 @default.
- W3010245316 cites W1968524627 @default.
- W3010245316 cites W2008056655 @default.
- W3010245316 cites W2103004421 @default.
- W3010245316 cites W2109116465 @default.
- W3010245316 cites W2128360321 @default.
- W3010245316 cites W2149566829 @default.
- W3010245316 cites W2150459579 @default.
- W3010245316 cites W2253429366 @default.
- W3010245316 cites W2259654173 @default.
- W3010245316 cites W2264499887 @default.
- W3010245316 cites W2346062110 @default.
- W3010245316 cites W2461805626 @default.
- W3010245316 cites W2470491115 @default.
- W3010245316 cites W2517065464 @default.
- W3010245316 cites W2580425508 @default.
- W3010245316 cites W2606926876 @default.
- W3010245316 cites W2613985230 @default.
- W3010245316 cites W2683486796 @default.
- W3010245316 cites W2751538714 @default.
- W3010245316 cites W2753919178 @default.
- W3010245316 cites W2765571304 @default.
- W3010245316 cites W2767128594 @default.
- W3010245316 cites W2797883881 @default.
- W3010245316 cites W2798890825 @default.
- W3010245316 cites W2799673576 @default.
- W3010245316 cites W2805456907 @default.
- W3010245316 cites W2809254203 @default.
- W3010245316 cites W2810405935 @default.
- W3010245316 cites W2892172066 @default.
- W3010245316 cites W2909986270 @default.
- W3010245316 cites W2919115771 @default.
- W3010245316 cites W2934913390 @default.
- W3010245316 cites W4232107454 @default.
- W3010245316 doi "https://doi.org/10.1186/s12880-020-0418-1" @default.
- W3010245316 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6998249" @default.
- W3010245316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32013871" @default.
- W3010245316 hasPublicationYear "2020" @default.
- W3010245316 type Work @default.
- W3010245316 sameAs 3010245316 @default.
- W3010245316 citedByCount "41" @default.
- W3010245316 countsByYear W30102453162020 @default.
- W3010245316 countsByYear W30102453162021 @default.
- W3010245316 countsByYear W30102453162022 @default.
- W3010245316 countsByYear W30102453162023 @default.
- W3010245316 crossrefType "journal-article" @default.
- W3010245316 hasAuthorship W3010245316A5016377624 @default.
- W3010245316 hasAuthorship W3010245316A5027990022 @default.
- W3010245316 hasAuthorship W3010245316A5034208717 @default.
- W3010245316 hasAuthorship W3010245316A5043754484 @default.
- W3010245316 hasAuthorship W3010245316A5066630597 @default.
- W3010245316 hasAuthorship W3010245316A5074604408 @default.
- W3010245316 hasBestOaLocation W30102453161 @default.
- W3010245316 hasConcept C10515644 @default.
- W3010245316 hasConcept C108583219 @default.
- W3010245316 hasConcept C121608353 @default.
- W3010245316 hasConcept C126322002 @default.
- W3010245316 hasConcept C126838900 @default.
- W3010245316 hasConcept C153180895 @default.
- W3010245316 hasConcept C154945302 @default.
- W3010245316 hasConcept C207103383 @default.
- W3010245316 hasConcept C2778559731 @default.
- W3010245316 hasConcept C2780210213 @default.
- W3010245316 hasConcept C2992026798 @default.
- W3010245316 hasConcept C41008148 @default.
- W3010245316 hasConcept C44249647 @default.
- W3010245316 hasConcept C50382708 @default.
- W3010245316 hasConcept C71924100 @default.
- W3010245316 hasConcept C81363708 @default.
- W3010245316 hasConceptScore W3010245316C10515644 @default.
- W3010245316 hasConceptScore W3010245316C108583219 @default.
- W3010245316 hasConceptScore W3010245316C121608353 @default.
- W3010245316 hasConceptScore W3010245316C126322002 @default.
- W3010245316 hasConceptScore W3010245316C126838900 @default.
- W3010245316 hasConceptScore W3010245316C153180895 @default.
- W3010245316 hasConceptScore W3010245316C154945302 @default.
- W3010245316 hasConceptScore W3010245316C207103383 @default.
- W3010245316 hasConceptScore W3010245316C2778559731 @default.
- W3010245316 hasConceptScore W3010245316C2780210213 @default.
- W3010245316 hasConceptScore W3010245316C2992026798 @default.
- W3010245316 hasConceptScore W3010245316C41008148 @default.
- W3010245316 hasConceptScore W3010245316C44249647 @default.
- W3010245316 hasConceptScore W3010245316C50382708 @default.
- W3010245316 hasConceptScore W3010245316C71924100 @default.
- W3010245316 hasConceptScore W3010245316C81363708 @default.
- W3010245316 hasIssue "1" @default.
- W3010245316 hasLocation W30102453161 @default.
- W3010245316 hasLocation W30102453162 @default.
- W3010245316 hasLocation W30102453163 @default.