Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010306431> ?p ?o ?g. }
- W3010306431 endingPage "1014" @default.
- W3010306431 startingPage "1003" @default.
- W3010306431 abstract "A series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task. In the past two decades, various researchers have designed algorithms to automatically detect and classify the A-phases with varying degrees of success, but the problem remains open. In this paper, a different approach is proposed: instead of attempting to design a general classifier for all subjects, we propose to train ad-hoc classifiers for each subject using as little data as possible, in order to drastically reduce the amount of time required from the expert. The proposed classifiers are based on deep convolutional neural networks using the log-spectrogram of the EEG signal as input data. Results are encouraging, achieving average accuracies of 80.31% when discriminating between A-phases and non A-phases, and 71.87% when classifying among A-phase sub-types, with only 25% of the total A-phases used for training. When additional expert-validated data is considered, the sub-type classification accuracy increases to 78.92%. These results show that a semi-automatic annotation system with assistance from an expert could provide a better alternative to fully automatic classifiers." @default.
- W3010306431 created "2020-03-13" @default.
- W3010306431 creator A5012428612 @default.
- W3010306431 creator A5018442684 @default.
- W3010306431 creator A5030340181 @default.
- W3010306431 creator A5070864495 @default.
- W3010306431 date "2020-03-02" @default.
- W3010306431 modified "2023-10-01" @default.
- W3010306431 title "A-phase classification using convolutional neural networks" @default.
- W3010306431 cites W1951913997 @default.
- W3010306431 cites W1971822597 @default.
- W3010306431 cites W1976962782 @default.
- W3010306431 cites W1981376770 @default.
- W3010306431 cites W1989958247 @default.
- W3010306431 cites W1998399571 @default.
- W3010306431 cites W1998532378 @default.
- W3010306431 cites W2000064609 @default.
- W3010306431 cites W2013782922 @default.
- W3010306431 cites W2017548581 @default.
- W3010306431 cites W2018256310 @default.
- W3010306431 cites W2025008455 @default.
- W3010306431 cites W2053035979 @default.
- W3010306431 cites W2062949433 @default.
- W3010306431 cites W2088936451 @default.
- W3010306431 cites W2094367836 @default.
- W3010306431 cites W2145216294 @default.
- W3010306431 cites W2151213279 @default.
- W3010306431 cites W2162800060 @default.
- W3010306431 cites W2180889008 @default.
- W3010306431 cites W2271361479 @default.
- W3010306431 cites W2533800772 @default.
- W3010306431 cites W2536451065 @default.
- W3010306431 cites W2592929672 @default.
- W3010306431 cites W2604096629 @default.
- W3010306431 cites W2748902594 @default.
- W3010306431 cites W2759483166 @default.
- W3010306431 cites W2790407631 @default.
- W3010306431 cites W2791419972 @default.
- W3010306431 cites W2795340004 @default.
- W3010306431 cites W2797694788 @default.
- W3010306431 cites W2808392264 @default.
- W3010306431 cites W2889838428 @default.
- W3010306431 cites W2900992113 @default.
- W3010306431 cites W2902644357 @default.
- W3010306431 cites W2905576641 @default.
- W3010306431 cites W2908603469 @default.
- W3010306431 cites W2963919481 @default.
- W3010306431 cites W2967756208 @default.
- W3010306431 doi "https://doi.org/10.1007/s11517-020-02144-6" @default.
- W3010306431 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32124224" @default.
- W3010306431 hasPublicationYear "2020" @default.
- W3010306431 type Work @default.
- W3010306431 sameAs 3010306431 @default.
- W3010306431 citedByCount "9" @default.
- W3010306431 countsByYear W30103064312021 @default.
- W3010306431 countsByYear W30103064312022 @default.
- W3010306431 countsByYear W30103064312023 @default.
- W3010306431 crossrefType "journal-article" @default.
- W3010306431 hasAuthorship W3010306431A5012428612 @default.
- W3010306431 hasAuthorship W3010306431A5018442684 @default.
- W3010306431 hasAuthorship W3010306431A5030340181 @default.
- W3010306431 hasAuthorship W3010306431A5070864495 @default.
- W3010306431 hasBestOaLocation W30103064312 @default.
- W3010306431 hasConcept C118552586 @default.
- W3010306431 hasConcept C119857082 @default.
- W3010306431 hasConcept C153180895 @default.
- W3010306431 hasConcept C154945302 @default.
- W3010306431 hasConcept C15744967 @default.
- W3010306431 hasConcept C2778205975 @default.
- W3010306431 hasConcept C28490314 @default.
- W3010306431 hasConcept C2910364982 @default.
- W3010306431 hasConcept C41008148 @default.
- W3010306431 hasConcept C45273575 @default.
- W3010306431 hasConcept C50644808 @default.
- W3010306431 hasConcept C522805319 @default.
- W3010306431 hasConcept C81363708 @default.
- W3010306431 hasConcept C95623464 @default.
- W3010306431 hasConceptScore W3010306431C118552586 @default.
- W3010306431 hasConceptScore W3010306431C119857082 @default.
- W3010306431 hasConceptScore W3010306431C153180895 @default.
- W3010306431 hasConceptScore W3010306431C154945302 @default.
- W3010306431 hasConceptScore W3010306431C15744967 @default.
- W3010306431 hasConceptScore W3010306431C2778205975 @default.
- W3010306431 hasConceptScore W3010306431C28490314 @default.
- W3010306431 hasConceptScore W3010306431C2910364982 @default.
- W3010306431 hasConceptScore W3010306431C41008148 @default.
- W3010306431 hasConceptScore W3010306431C45273575 @default.
- W3010306431 hasConceptScore W3010306431C50644808 @default.
- W3010306431 hasConceptScore W3010306431C522805319 @default.
- W3010306431 hasConceptScore W3010306431C81363708 @default.
- W3010306431 hasConceptScore W3010306431C95623464 @default.
- W3010306431 hasIssue "5" @default.
- W3010306431 hasLocation W30103064311 @default.
- W3010306431 hasLocation W30103064312 @default.
- W3010306431 hasOpenAccess W3010306431 @default.
- W3010306431 hasPrimaryLocation W30103064311 @default.
- W3010306431 hasRelatedWork W2563096758 @default.
- W3010306431 hasRelatedWork W2621073571 @default.