Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010331175> ?p ?o ?g. }
- W3010331175 abstract "Robust cost optimization is the task of fitting parameters to data points containing outliers. In particular, we focus on large-scale computer vision problems, such as bundle adjustment, where Non-Linear Least Square (NLLS) solvers are the current workhorse. In this context, NLLS-based state of the art algorithms have been designed either to quickly improve the target objective and find a local minimum close to the initial value of the parameters, or to have a strong ability to escape poor local minima. In this paper, we propose a novel algorithm relying on multi-objective optimization which allows to match those two properties. We experimentally demonstrate that our algorithm has an ability to escape poor local minima that is on par with the best performing algorithms with a faster decrease of the target objective." @default.
- W3010331175 created "2020-03-13" @default.
- W3010331175 creator A5020965719 @default.
- W3010331175 creator A5044756287 @default.
- W3010331175 date "2019-10-01" @default.
- W3010331175 modified "2023-09-23" @default.
- W3010331175 title "Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation" @default.
- W3010331175 cites W145691285 @default.
- W3010331175 cites W1484371059 @default.
- W3010331175 cites W1521666054 @default.
- W3010331175 cites W1585711251 @default.
- W3010331175 cites W170526737 @default.
- W3010331175 cites W1833338034 @default.
- W3010331175 cites W1996726072 @default.
- W3010331175 cites W2004586020 @default.
- W3010331175 cites W2024060531 @default.
- W3010331175 cites W2035080386 @default.
- W3010331175 cites W2075402943 @default.
- W3010331175 cites W2080744942 @default.
- W3010331175 cites W2088616581 @default.
- W3010331175 cites W2100717205 @default.
- W3010331175 cites W2113152312 @default.
- W3010331175 cites W2113820768 @default.
- W3010331175 cites W2124313187 @default.
- W3010331175 cites W2149454052 @default.
- W3010331175 cites W2161877964 @default.
- W3010331175 cites W2210705382 @default.
- W3010331175 cites W2518523798 @default.
- W3010331175 cites W2751901725 @default.
- W3010331175 cites W2788191773 @default.
- W3010331175 cites W2890538051 @default.
- W3010331175 cites W2895545984 @default.
- W3010331175 cites W2903718010 @default.
- W3010331175 cites W3105610594 @default.
- W3010331175 cites W7175369 @default.
- W3010331175 doi "https://doi.org/10.1109/iccv.2019.01034" @default.
- W3010331175 hasPublicationYear "2019" @default.
- W3010331175 type Work @default.
- W3010331175 sameAs 3010331175 @default.
- W3010331175 citedByCount "3" @default.
- W3010331175 countsByYear W30103311752020 @default.
- W3010331175 countsByYear W30103311752021 @default.
- W3010331175 crossrefType "proceedings-article" @default.
- W3010331175 hasAuthorship W3010331175A5020965719 @default.
- W3010331175 hasAuthorship W3010331175A5044756287 @default.
- W3010331175 hasBestOaLocation W30103311752 @default.
- W3010331175 hasConcept C11413529 @default.
- W3010331175 hasConcept C115961682 @default.
- W3010331175 hasConcept C120665830 @default.
- W3010331175 hasConcept C121332964 @default.
- W3010331175 hasConcept C126255220 @default.
- W3010331175 hasConcept C127413603 @default.
- W3010331175 hasConcept C134306372 @default.
- W3010331175 hasConcept C137635306 @default.
- W3010331175 hasConcept C151730666 @default.
- W3010331175 hasConcept C154945302 @default.
- W3010331175 hasConcept C159985019 @default.
- W3010331175 hasConcept C179458375 @default.
- W3010331175 hasConcept C186633575 @default.
- W3010331175 hasConcept C192209626 @default.
- W3010331175 hasConcept C192562407 @default.
- W3010331175 hasConcept C201995342 @default.
- W3010331175 hasConcept C2778134712 @default.
- W3010331175 hasConcept C2779343474 @default.
- W3010331175 hasConcept C2780451532 @default.
- W3010331175 hasConcept C33923547 @default.
- W3010331175 hasConcept C41008148 @default.
- W3010331175 hasConcept C79337645 @default.
- W3010331175 hasConcept C86803240 @default.
- W3010331175 hasConceptScore W3010331175C11413529 @default.
- W3010331175 hasConceptScore W3010331175C115961682 @default.
- W3010331175 hasConceptScore W3010331175C120665830 @default.
- W3010331175 hasConceptScore W3010331175C121332964 @default.
- W3010331175 hasConceptScore W3010331175C126255220 @default.
- W3010331175 hasConceptScore W3010331175C127413603 @default.
- W3010331175 hasConceptScore W3010331175C134306372 @default.
- W3010331175 hasConceptScore W3010331175C137635306 @default.
- W3010331175 hasConceptScore W3010331175C151730666 @default.
- W3010331175 hasConceptScore W3010331175C154945302 @default.
- W3010331175 hasConceptScore W3010331175C159985019 @default.
- W3010331175 hasConceptScore W3010331175C179458375 @default.
- W3010331175 hasConceptScore W3010331175C186633575 @default.
- W3010331175 hasConceptScore W3010331175C192209626 @default.
- W3010331175 hasConceptScore W3010331175C192562407 @default.
- W3010331175 hasConceptScore W3010331175C201995342 @default.
- W3010331175 hasConceptScore W3010331175C2778134712 @default.
- W3010331175 hasConceptScore W3010331175C2779343474 @default.
- W3010331175 hasConceptScore W3010331175C2780451532 @default.
- W3010331175 hasConceptScore W3010331175C33923547 @default.
- W3010331175 hasConceptScore W3010331175C41008148 @default.
- W3010331175 hasConceptScore W3010331175C79337645 @default.
- W3010331175 hasConceptScore W3010331175C86803240 @default.
- W3010331175 hasLocation W30103311751 @default.
- W3010331175 hasLocation W30103311752 @default.
- W3010331175 hasLocation W30103311753 @default.
- W3010331175 hasLocation W30103311754 @default.
- W3010331175 hasLocation W30103311755 @default.
- W3010331175 hasOpenAccess W3010331175 @default.
- W3010331175 hasPrimaryLocation W30103311751 @default.
- W3010331175 hasRelatedWork W145691285 @default.