Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010331681> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3010331681 startingPage "401" @default.
- W3010331681 abstract "Model Predictive Control (MPC) is a technique that uses plant, disturbance, and noise models to construct controllers. These MPC controllers can adjust the control action based on the predicted change in the output setpoint. This predictive ability, when combined with the conventional feedback scheme, enable the MPC controllers to make smoother and closer adjustments to the optimal control action. Furthermore, typical MPC schemes can be used for multivariable systems and can handle process interactions with ease. Over the last five decades, MPC has been a popular subject for research and as a result, commercial software packages have included a variety of MPC schemes. This paper compares the strength and weakness of MPC in (i) LabVIEW Control Design and Simulation (CDS) Module, (ii) MATLAB MPC Control Toolbox and (iii) DMCplus Controller in Aspen Plus Dynamics (APD) and Aspen Modeler Customer (AMC). Overall all MPC controllers are based on state-space models of real or simulated plant data. Creating and simulating an MPC controller using LabVIEW CDS is simpler and more straightforward because the module focuses only on the last stage of creating the controller. All other prestages such as linearized models and Relative Gain Array (RGA) must be done somewhere else or by one's own LabVIEW programs. MATLAB has almost all built-in functions for these prestages and is more user-friendly. In contrast, implementing a DMCplus Controller in the Aspen package is very challenging. However with a huge database of built-in properties and models for distillation columns, APD with a DMCplus controller can handle difficult multivariable control problems in oil refineries and petrochemical plants. The ultimate goal of this work is to find a more user-friendly way to simulate and test the MPC controllers in two platforms: the Universal Water System and the Engineering Pilot Plant at Murdoch University." @default.
- W3010331681 created "2020-03-13" @default.
- W3010331681 creator A5003074767 @default.
- W3010331681 creator A5023303772 @default.
- W3010331681 creator A5056837862 @default.
- W3010331681 date "2019-01-01" @default.
- W3010331681 modified "2023-09-27" @default.
- W3010331681 title "Design and implementation of predictive controllers in LabVIEW, MATLAB and Aspen" @default.
- W3010331681 hasPublicationYear "2019" @default.
- W3010331681 type Work @default.
- W3010331681 sameAs 3010331681 @default.
- W3010331681 citedByCount "0" @default.
- W3010331681 crossrefType "journal-article" @default.
- W3010331681 hasAuthorship W3010331681A5003074767 @default.
- W3010331681 hasAuthorship W3010331681A5023303772 @default.
- W3010331681 hasAuthorship W3010331681A5056837862 @default.
- W3010331681 hasConcept C111919701 @default.
- W3010331681 hasConcept C117312493 @default.
- W3010331681 hasConcept C12302492 @default.
- W3010331681 hasConcept C127413603 @default.
- W3010331681 hasConcept C133731056 @default.
- W3010331681 hasConcept C154945302 @default.
- W3010331681 hasConcept C172205157 @default.
- W3010331681 hasConcept C199360897 @default.
- W3010331681 hasConcept C203479927 @default.
- W3010331681 hasConcept C2775924081 @default.
- W3010331681 hasConcept C2777904410 @default.
- W3010331681 hasConcept C2780365114 @default.
- W3010331681 hasConcept C41008148 @default.
- W3010331681 hasConcept C47446073 @default.
- W3010331681 hasConcept C6557445 @default.
- W3010331681 hasConcept C86803240 @default.
- W3010331681 hasConcept C98045186 @default.
- W3010331681 hasConceptScore W3010331681C111919701 @default.
- W3010331681 hasConceptScore W3010331681C117312493 @default.
- W3010331681 hasConceptScore W3010331681C12302492 @default.
- W3010331681 hasConceptScore W3010331681C127413603 @default.
- W3010331681 hasConceptScore W3010331681C133731056 @default.
- W3010331681 hasConceptScore W3010331681C154945302 @default.
- W3010331681 hasConceptScore W3010331681C172205157 @default.
- W3010331681 hasConceptScore W3010331681C199360897 @default.
- W3010331681 hasConceptScore W3010331681C203479927 @default.
- W3010331681 hasConceptScore W3010331681C2775924081 @default.
- W3010331681 hasConceptScore W3010331681C2777904410 @default.
- W3010331681 hasConceptScore W3010331681C2780365114 @default.
- W3010331681 hasConceptScore W3010331681C41008148 @default.
- W3010331681 hasConceptScore W3010331681C47446073 @default.
- W3010331681 hasConceptScore W3010331681C6557445 @default.
- W3010331681 hasConceptScore W3010331681C86803240 @default.
- W3010331681 hasConceptScore W3010331681C98045186 @default.
- W3010331681 hasLocation W30103316811 @default.
- W3010331681 hasOpenAccess W3010331681 @default.
- W3010331681 hasPrimaryLocation W30103316811 @default.
- W3010331681 hasRelatedWork W132857952 @default.
- W3010331681 hasRelatedWork W1419770805 @default.
- W3010331681 hasRelatedWork W1573288305 @default.
- W3010331681 hasRelatedWork W2033231137 @default.
- W3010331681 hasRelatedWork W2097845724 @default.
- W3010331681 hasRelatedWork W2156146709 @default.
- W3010331681 hasRelatedWork W2157972268 @default.
- W3010331681 hasRelatedWork W2182532206 @default.
- W3010331681 hasRelatedWork W2183887661 @default.
- W3010331681 hasRelatedWork W2256025814 @default.
- W3010331681 hasRelatedWork W2319014869 @default.
- W3010331681 hasRelatedWork W2349107162 @default.
- W3010331681 hasRelatedWork W2368094927 @default.
- W3010331681 hasRelatedWork W2724266064 @default.
- W3010331681 hasRelatedWork W2760461836 @default.
- W3010331681 hasRelatedWork W2804877068 @default.
- W3010331681 hasRelatedWork W2900641438 @default.
- W3010331681 hasRelatedWork W2944889420 @default.
- W3010331681 hasRelatedWork W3009184693 @default.
- W3010331681 hasRelatedWork W2878167868 @default.
- W3010331681 isParatext "false" @default.
- W3010331681 isRetracted "false" @default.
- W3010331681 magId "3010331681" @default.
- W3010331681 workType "article" @default.