Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010358965> ?p ?o ?g. }
- W3010358965 abstract "Abstract Background Weeds are a major cause of low agricultural productivity. Some weeds have morphological features similar to crops, making them difficult to discriminate. Results We propose a novel method using a combination of filtered features extracted by combined Local Binary Pattern operators and features extracted by plant-leaf contour masks to improve the discrimination rate between broadleaf plants. Opening and closing morphological operators were applied to filter noise in plant images. The images at 4 stages of growth were collected using a testbed system. Mask-based local binary pattern features were combined with filtered features and a coefficient k. The classification of crops and weeds was achieved using support vector machine with radial basis function kernel. By investigating optimal parameters, this method reached a classification accuracy of 98.63% with 4 classes in the “bccr-segset” dataset published online in comparison with an accuracy of 91.85% attained by a previously reported method. Conclusions The proposed method enhances the identification of crops and weeds with similar appearance and demonstrates its capabilities in real-time weed detection." @default.
- W3010358965 created "2020-03-13" @default.
- W3010358965 creator A5004955406 @default.
- W3010358965 creator A5039592052 @default.
- W3010358965 creator A5055225657 @default.
- W3010358965 creator A5062742632 @default.
- W3010358965 date "2020-03-01" @default.
- W3010358965 modified "2023-10-02" @default.
- W3010358965 title "A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered Local Binary Pattern operators" @default.
- W3010358965 cites W1484720787 @default.
- W3010358965 cites W1500053687 @default.
- W3010358965 cites W1928010392 @default.
- W3010358965 cites W1963969681 @default.
- W3010358965 cites W1973552978 @default.
- W3010358965 cites W1973788747 @default.
- W3010358965 cites W1975959625 @default.
- W3010358965 cites W1980148204 @default.
- W3010358965 cites W1985473486 @default.
- W3010358965 cites W1986702797 @default.
- W3010358965 cites W1988805924 @default.
- W3010358965 cites W1993655741 @default.
- W3010358965 cites W1994315897 @default.
- W3010358965 cites W2004134605 @default.
- W3010358965 cites W2012033372 @default.
- W3010358965 cites W2014408679 @default.
- W3010358965 cites W2020681746 @default.
- W3010358965 cites W2022274350 @default.
- W3010358965 cites W2039051707 @default.
- W3010358965 cites W2045678056 @default.
- W3010358965 cites W2046720219 @default.
- W3010358965 cites W2052446636 @default.
- W3010358965 cites W2053544201 @default.
- W3010358965 cites W2058021621 @default.
- W3010358965 cites W2071423370 @default.
- W3010358965 cites W2084250485 @default.
- W3010358965 cites W2084274051 @default.
- W3010358965 cites W2087347434 @default.
- W3010358965 cites W2089464686 @default.
- W3010358965 cites W2093020519 @default.
- W3010358965 cites W2094651390 @default.
- W3010358965 cites W2098305432 @default.
- W3010358965 cites W2103496373 @default.
- W3010358965 cites W2112560640 @default.
- W3010358965 cites W2113410727 @default.
- W3010358965 cites W2130844249 @default.
- W3010358965 cites W2139916508 @default.
- W3010358965 cites W2145310492 @default.
- W3010358965 cites W2147141800 @default.
- W3010358965 cites W2153635508 @default.
- W3010358965 cites W2154741421 @default.
- W3010358965 cites W2163352848 @default.
- W3010358965 cites W2163808566 @default.
- W3010358965 cites W2172196609 @default.
- W3010358965 cites W2176709104 @default.
- W3010358965 cites W2178502914 @default.
- W3010358965 cites W2293457052 @default.
- W3010358965 cites W2409375369 @default.
- W3010358965 cites W2480645619 @default.
- W3010358965 cites W2524954406 @default.
- W3010358965 cites W2626661377 @default.
- W3010358965 cites W3010358965 @default.
- W3010358965 cites W4239510810 @default.
- W3010358965 cites W4293768955 @default.
- W3010358965 doi "https://doi.org/10.1093/gigascience/giaa017" @default.
- W3010358965 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7055473" @default.
- W3010358965 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32129847" @default.
- W3010358965 hasPublicationYear "2020" @default.
- W3010358965 type Work @default.
- W3010358965 sameAs 3010358965 @default.
- W3010358965 citedByCount "30" @default.
- W3010358965 countsByYear W30103589652020 @default.
- W3010358965 countsByYear W30103589652021 @default.
- W3010358965 countsByYear W30103589652022 @default.
- W3010358965 countsByYear W30103589652023 @default.
- W3010358965 crossrefType "journal-article" @default.
- W3010358965 hasAuthorship W3010358965A5004955406 @default.
- W3010358965 hasAuthorship W3010358965A5039592052 @default.
- W3010358965 hasAuthorship W3010358965A5055225657 @default.
- W3010358965 hasAuthorship W3010358965A5062742632 @default.
- W3010358965 hasBestOaLocation W30103589651 @default.
- W3010358965 hasConcept C106131492 @default.
- W3010358965 hasConcept C114614502 @default.
- W3010358965 hasConcept C115961682 @default.
- W3010358965 hasConcept C12267149 @default.
- W3010358965 hasConcept C153180895 @default.
- W3010358965 hasConcept C154945302 @default.
- W3010358965 hasConcept C31972630 @default.
- W3010358965 hasConcept C33923547 @default.
- W3010358965 hasConcept C41008148 @default.
- W3010358965 hasConcept C48372109 @default.
- W3010358965 hasConcept C53533937 @default.
- W3010358965 hasConcept C74193536 @default.
- W3010358965 hasConcept C87335442 @default.
- W3010358965 hasConcept C94375191 @default.
- W3010358965 hasConcept C99498987 @default.
- W3010358965 hasConceptScore W3010358965C106131492 @default.
- W3010358965 hasConceptScore W3010358965C114614502 @default.
- W3010358965 hasConceptScore W3010358965C115961682 @default.
- W3010358965 hasConceptScore W3010358965C12267149 @default.
- W3010358965 hasConceptScore W3010358965C153180895 @default.