Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010367128> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3010367128 abstract "Beam alignment is a challenging and time-consuming process for millimeter wave (mmWave) initial access (IA). We propose a beam training method that is assisted by machine learning (ML), where we train ML models to predict the optimal Access Point (AP) and optimal beam for a user equipment (UE) given its Global Positioning System (GPS) coordinates. After a (possibly offline) training phase during which exhaustive or hierarchical beam training is performed, our beam training method predicts a few candidate APs and beams knowing only the location of the UE. We train the models and evaluate the performance with realistic mmWave beamforming (BF) data generated from state-of-the- art ray tracing software. We show that even with dynamic scatterers and imperfect knowledge of the UE locations, our beam training method can reliably find the optimal AP and the optimal beam for a UE while reducing the search time by 4x for AP selection and over 10x for beam selection." @default.
- W3010367128 created "2020-03-13" @default.
- W3010367128 creator A5042833857 @default.
- W3010367128 creator A5073860523 @default.
- W3010367128 date "2019-12-01" @default.
- W3010367128 modified "2023-09-23" @default.
- W3010367128 title "Machine Learning-Assisted Beam Alignment for mmWave Systems" @default.
- W3010367128 cites W1504983838 @default.
- W3010367128 cites W1987804395 @default.
- W3010367128 cites W2035330915 @default.
- W3010367128 cites W2049501010 @default.
- W3010367128 cites W2116334496 @default.
- W3010367128 cites W2599033778 @default.
- W3010367128 cites W2603407422 @default.
- W3010367128 cites W2605261875 @default.
- W3010367128 cites W2614851539 @default.
- W3010367128 cites W2962944637 @default.
- W3010367128 cites W2963170234 @default.
- W3010367128 cites W2963408914 @default.
- W3010367128 cites W3101675980 @default.
- W3010367128 cites W779733492 @default.
- W3010367128 doi "https://doi.org/10.1109/globecom38437.2019.9013296" @default.
- W3010367128 hasPublicationYear "2019" @default.
- W3010367128 type Work @default.
- W3010367128 sameAs 3010367128 @default.
- W3010367128 citedByCount "15" @default.
- W3010367128 countsByYear W30103671282021 @default.
- W3010367128 countsByYear W30103671282022 @default.
- W3010367128 countsByYear W30103671282023 @default.
- W3010367128 crossrefType "proceedings-article" @default.
- W3010367128 hasAuthorship W3010367128A5042833857 @default.
- W3010367128 hasAuthorship W3010367128A5073860523 @default.
- W3010367128 hasConcept C120665830 @default.
- W3010367128 hasConcept C121332964 @default.
- W3010367128 hasConcept C168834538 @default.
- W3010367128 hasConcept C41008148 @default.
- W3010367128 hasConceptScore W3010367128C120665830 @default.
- W3010367128 hasConceptScore W3010367128C121332964 @default.
- W3010367128 hasConceptScore W3010367128C168834538 @default.
- W3010367128 hasConceptScore W3010367128C41008148 @default.
- W3010367128 hasLocation W30103671281 @default.
- W3010367128 hasOpenAccess W3010367128 @default.
- W3010367128 hasPrimaryLocation W30103671281 @default.
- W3010367128 hasRelatedWork W2049775471 @default.
- W3010367128 hasRelatedWork W2093578348 @default.
- W3010367128 hasRelatedWork W2350741829 @default.
- W3010367128 hasRelatedWork W2358668433 @default.
- W3010367128 hasRelatedWork W2376932109 @default.
- W3010367128 hasRelatedWork W2382290278 @default.
- W3010367128 hasRelatedWork W2390279801 @default.
- W3010367128 hasRelatedWork W2748952813 @default.
- W3010367128 hasRelatedWork W2899084033 @default.
- W3010367128 hasRelatedWork W3004735627 @default.
- W3010367128 isParatext "false" @default.
- W3010367128 isRetracted "false" @default.
- W3010367128 magId "3010367128" @default.
- W3010367128 workType "article" @default.