Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010384738> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3010384738 abstract "As a promising candidate for future wireless systems, large intelligent surfaces (LISs) recently emerged to serve considerate improvements in both spectral and energy efficiencies. These surfaces consist of large numbers of passive elements capable of intelligently reflecting the incident signals. Since the LIS employs passive elements, critical challenges are inherent in the channel training/estimation process in order to properly design the LIS reflection matrices. One challenge particularly is how to acquire the channel knowledge with low training overhead and power consumption solutions. In this paper, we first propose an energy-efficient novel LIS architecture where all the LIS elements are passive except few non-uniformly distributed active elements (connected to the baseband). Then, we develop an efficient solution to design the LIS reflection matrices, with negligible training overhead, leveraging deep learning tools. Given what we call environment descriptors, the LIS has the ability to learn the optimal LIS reflection matrices. The simulation results show that the developed solution can approach the optimal upper bound, when only a small fraction of the LIS elements are active, yielding a promising solution for LIS systems from both energy efficiency and training overhead perspectives." @default.
- W3010384738 created "2020-03-13" @default.
- W3010384738 creator A5000913573 @default.
- W3010384738 creator A5003243464 @default.
- W3010384738 creator A5036355947 @default.
- W3010384738 date "2019-12-01" @default.
- W3010384738 modified "2023-10-14" @default.
- W3010384738 title "Deep Learning for Large Intelligent Surfaces in Millimeter Wave and Massive MIMO Systems" @default.
- W3010384738 cites W2137983211 @default.
- W3010384738 cites W2195693430 @default.
- W3010384738 cites W2735938380 @default.
- W3010384738 cites W2765606903 @default.
- W3010384738 cites W2805166665 @default.
- W3010384738 cites W2950077417 @default.
- W3010384738 cites W2963408914 @default.
- W3010384738 cites W2963460596 @default.
- W3010384738 doi "https://doi.org/10.1109/globecom38437.2019.9013256" @default.
- W3010384738 hasPublicationYear "2019" @default.
- W3010384738 type Work @default.
- W3010384738 sameAs 3010384738 @default.
- W3010384738 citedByCount "104" @default.
- W3010384738 countsByYear W30103847382019 @default.
- W3010384738 countsByYear W30103847382020 @default.
- W3010384738 countsByYear W30103847382021 @default.
- W3010384738 countsByYear W30103847382022 @default.
- W3010384738 countsByYear W30103847382023 @default.
- W3010384738 crossrefType "proceedings-article" @default.
- W3010384738 hasAuthorship W3010384738A5000913573 @default.
- W3010384738 hasAuthorship W3010384738A5003243464 @default.
- W3010384738 hasAuthorship W3010384738A5036355947 @default.
- W3010384738 hasConcept C111919701 @default.
- W3010384738 hasConcept C113775141 @default.
- W3010384738 hasConcept C119599485 @default.
- W3010384738 hasConcept C127162648 @default.
- W3010384738 hasConcept C127413603 @default.
- W3010384738 hasConcept C137246740 @default.
- W3010384738 hasConcept C199360897 @default.
- W3010384738 hasConcept C207987634 @default.
- W3010384738 hasConcept C2742236 @default.
- W3010384738 hasConcept C2776257435 @default.
- W3010384738 hasConcept C2779960059 @default.
- W3010384738 hasConcept C2780165032 @default.
- W3010384738 hasConcept C41008148 @default.
- W3010384738 hasConcept C555944384 @default.
- W3010384738 hasConcept C65165936 @default.
- W3010384738 hasConcept C65682993 @default.
- W3010384738 hasConcept C76155785 @default.
- W3010384738 hasConcept C98045186 @default.
- W3010384738 hasConceptScore W3010384738C111919701 @default.
- W3010384738 hasConceptScore W3010384738C113775141 @default.
- W3010384738 hasConceptScore W3010384738C119599485 @default.
- W3010384738 hasConceptScore W3010384738C127162648 @default.
- W3010384738 hasConceptScore W3010384738C127413603 @default.
- W3010384738 hasConceptScore W3010384738C137246740 @default.
- W3010384738 hasConceptScore W3010384738C199360897 @default.
- W3010384738 hasConceptScore W3010384738C207987634 @default.
- W3010384738 hasConceptScore W3010384738C2742236 @default.
- W3010384738 hasConceptScore W3010384738C2776257435 @default.
- W3010384738 hasConceptScore W3010384738C2779960059 @default.
- W3010384738 hasConceptScore W3010384738C2780165032 @default.
- W3010384738 hasConceptScore W3010384738C41008148 @default.
- W3010384738 hasConceptScore W3010384738C555944384 @default.
- W3010384738 hasConceptScore W3010384738C65165936 @default.
- W3010384738 hasConceptScore W3010384738C65682993 @default.
- W3010384738 hasConceptScore W3010384738C76155785 @default.
- W3010384738 hasConceptScore W3010384738C98045186 @default.
- W3010384738 hasLocation W30103847381 @default.
- W3010384738 hasOpenAccess W3010384738 @default.
- W3010384738 hasPrimaryLocation W30103847381 @default.
- W3010384738 hasRelatedWork W1938195807 @default.
- W3010384738 hasRelatedWork W2117014495 @default.
- W3010384738 hasRelatedWork W2793383610 @default.
- W3010384738 hasRelatedWork W2872971718 @default.
- W3010384738 hasRelatedWork W2950583953 @default.
- W3010384738 hasRelatedWork W4280499399 @default.
- W3010384738 hasRelatedWork W4284676340 @default.
- W3010384738 hasRelatedWork W4286508357 @default.
- W3010384738 hasRelatedWork W4289529325 @default.
- W3010384738 hasRelatedWork W4387075306 @default.
- W3010384738 isParatext "false" @default.
- W3010384738 isRetracted "false" @default.
- W3010384738 magId "3010384738" @default.
- W3010384738 workType "article" @default.