Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010435107> ?p ?o ?g. }
- W3010435107 abstract "Abstract Recordings from large neural populations are becoming an increasingly popular and accessible method in experimental neuroscience. While the activity of individual neurons is often too stochastic to interrogate circuit function on a moment-by-moment basis, multi-neuronal recordings enable us to do so by pooling statistical power across many cells. For example, groups of neurons often exhibit correlated gain or amplitude modulation across trials, which can be statistically formalized in a tensor decomposition framework (Williams et al. 2018). Additionally, the time course of neural population dynamics can be shifted or stretched/compressed, which can be modeled by time warping methods (Williams et al. 2020). Here, I describe how these two modeling frameworks can be combined, and show some evidence that doing so can be highly advantageous for practical neural data analysis—for example, the presence of random time shifts hampers the performance and interpretability of tensor decomposition, while a time-shifted variant of this model corrects for these disruptions and uncovers ground truth structure in simulated data." @default.
- W3010435107 created "2020-03-13" @default.
- W3010435107 creator A5007674806 @default.
- W3010435107 date "2020-03-04" @default.
- W3010435107 modified "2023-09-25" @default.
- W3010435107 title "Combining tensor decomposition and time warping models for multi-neuronal spike train analysis" @default.
- W3010435107 cites W1594523130 @default.
- W3010435107 cites W1902027874 @default.
- W3010435107 cites W1961971483 @default.
- W3010435107 cites W1964827935 @default.
- W3010435107 cites W1969795764 @default.
- W3010435107 cites W1972869628 @default.
- W3010435107 cites W1988013646 @default.
- W3010435107 cites W1992223193 @default.
- W3010435107 cites W2000215628 @default.
- W3010435107 cites W2000769684 @default.
- W3010435107 cites W2020689508 @default.
- W3010435107 cites W2022242697 @default.
- W3010435107 cites W2024165284 @default.
- W3010435107 cites W2024356620 @default.
- W3010435107 cites W2035849979 @default.
- W3010435107 cites W2041586962 @default.
- W3010435107 cites W2047712100 @default.
- W3010435107 cites W2057503509 @default.
- W3010435107 cites W2089707262 @default.
- W3010435107 cites W2091470752 @default.
- W3010435107 cites W2095141632 @default.
- W3010435107 cites W2105136387 @default.
- W3010435107 cites W2112246597 @default.
- W3010435107 cites W2115442710 @default.
- W3010435107 cites W2123811638 @default.
- W3010435107 cites W2138260451 @default.
- W3010435107 cites W2139688603 @default.
- W3010435107 cites W2143997647 @default.
- W3010435107 cites W2144351558 @default.
- W3010435107 cites W2145871805 @default.
- W3010435107 cites W2172195418 @default.
- W3010435107 cites W2315452447 @default.
- W3010435107 cites W23745746 @default.
- W3010435107 cites W2476974423 @default.
- W3010435107 cites W2567050542 @default.
- W3010435107 cites W2767902147 @default.
- W3010435107 cites W2950575907 @default.
- W3010435107 cites W2951777958 @default.
- W3010435107 cites W2951881727 @default.
- W3010435107 cites W2953308498 @default.
- W3010435107 cites W2954124637 @default.
- W3010435107 cites W2991597663 @default.
- W3010435107 cites W3122703110 @default.
- W3010435107 cites W4250589301 @default.
- W3010435107 cites W4253243508 @default.
- W3010435107 doi "https://doi.org/10.1101/2020.03.02.974014" @default.
- W3010435107 hasPublicationYear "2020" @default.
- W3010435107 type Work @default.
- W3010435107 sameAs 3010435107 @default.
- W3010435107 citedByCount "4" @default.
- W3010435107 countsByYear W30104351072020 @default.
- W3010435107 countsByYear W30104351072021 @default.
- W3010435107 crossrefType "posted-content" @default.
- W3010435107 hasAuthorship W3010435107A5007674806 @default.
- W3010435107 hasBestOaLocation W30104351071 @default.
- W3010435107 hasConcept C115903868 @default.
- W3010435107 hasConcept C121332964 @default.
- W3010435107 hasConcept C144024400 @default.
- W3010435107 hasConcept C149923435 @default.
- W3010435107 hasConcept C153180895 @default.
- W3010435107 hasConcept C154945302 @default.
- W3010435107 hasConcept C155281189 @default.
- W3010435107 hasConcept C157202957 @default.
- W3010435107 hasConcept C179254644 @default.
- W3010435107 hasConcept C202444582 @default.
- W3010435107 hasConcept C2781067378 @default.
- W3010435107 hasConcept C2781390188 @default.
- W3010435107 hasConcept C2908647359 @default.
- W3010435107 hasConcept C2909946758 @default.
- W3010435107 hasConcept C2986737658 @default.
- W3010435107 hasConcept C33923547 @default.
- W3010435107 hasConcept C41008148 @default.
- W3010435107 hasConcept C70437156 @default.
- W3010435107 hasConcept C74650414 @default.
- W3010435107 hasConcept C88516994 @default.
- W3010435107 hasConceptScore W3010435107C115903868 @default.
- W3010435107 hasConceptScore W3010435107C121332964 @default.
- W3010435107 hasConceptScore W3010435107C144024400 @default.
- W3010435107 hasConceptScore W3010435107C149923435 @default.
- W3010435107 hasConceptScore W3010435107C153180895 @default.
- W3010435107 hasConceptScore W3010435107C154945302 @default.
- W3010435107 hasConceptScore W3010435107C155281189 @default.
- W3010435107 hasConceptScore W3010435107C157202957 @default.
- W3010435107 hasConceptScore W3010435107C179254644 @default.
- W3010435107 hasConceptScore W3010435107C202444582 @default.
- W3010435107 hasConceptScore W3010435107C2781067378 @default.
- W3010435107 hasConceptScore W3010435107C2781390188 @default.
- W3010435107 hasConceptScore W3010435107C2908647359 @default.
- W3010435107 hasConceptScore W3010435107C2909946758 @default.
- W3010435107 hasConceptScore W3010435107C2986737658 @default.
- W3010435107 hasConceptScore W3010435107C33923547 @default.
- W3010435107 hasConceptScore W3010435107C41008148 @default.
- W3010435107 hasConceptScore W3010435107C70437156 @default.
- W3010435107 hasConceptScore W3010435107C74650414 @default.