Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010435708> ?p ?o ?g. }
- W3010435708 endingPage "114308" @default.
- W3010435708 startingPage "114308" @default.
- W3010435708 abstract "The prediction and identification of the factors controlling heavy metal transfer in soil-crop ecosystems are of critical importance. In this study, random forest (RF), gradient boosted machine (GBM), and generalised linear (GLM) models were compared after being used to model and identify prior factors that affect the transfer of heavy metals (HMs) in soil-crop systems in the Yangtze River Delta, China, based on 13 covariates with 1822 pairs of soil-crop samples. The mean bioaccumulation factors (BAFs) for all crops followed the order Cd > Zn > As > Cu > Ni > Hg > Cr > Pb. The RF model showed the best prediction ability for the BAFs of HMs in soil-crop ecosystems, followed by GBM and GLM. The R2 values of the RF models for the BAFs of Zn, Cu, Cr, Ni, Hg, Cd, As, and Pb were 0.84, 0.66, 0.59, 0.58, 0.58, 0.51, 0.30, and 0.17, respectively. The primary controlling factor in soil-to-crop transfer of all HMs under study was plant type, followed by soil heavy metal content and soil organic materials. The model used herein could be used to assist the prediction of heavy metal contents in crops based on heavy metal contents in soil and other covariates, and can significantly reduce the cost, labour, and time requirements involved with laboratory analysis. It can also be used to quantify the importance of variables and identify potential control factors in heavy metal bioaccumulation in soil-crop ecosystems." @default.
- W3010435708 created "2020-03-13" @default.
- W3010435708 creator A5015984879 @default.
- W3010435708 creator A5016449371 @default.
- W3010435708 creator A5036169699 @default.
- W3010435708 creator A5036411979 @default.
- W3010435708 creator A5038986917 @default.
- W3010435708 creator A5058480306 @default.
- W3010435708 creator A5071386168 @default.
- W3010435708 creator A5080056117 @default.
- W3010435708 creator A5084017348 @default.
- W3010435708 date "2020-07-01" @default.
- W3010435708 modified "2023-10-10" @default.
- W3010435708 title "Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning" @default.
- W3010435708 cites W1678356000 @default.
- W3010435708 cites W1970865605 @default.
- W3010435708 cites W1971898036 @default.
- W3010435708 cites W1972153086 @default.
- W3010435708 cites W1976462620 @default.
- W3010435708 cites W1978155359 @default.
- W3010435708 cites W1978768137 @default.
- W3010435708 cites W1979826026 @default.
- W3010435708 cites W1987716152 @default.
- W3010435708 cites W1992164912 @default.
- W3010435708 cites W1995850126 @default.
- W3010435708 cites W1998811800 @default.
- W3010435708 cites W1999905751 @default.
- W3010435708 cites W2001092000 @default.
- W3010435708 cites W2007656669 @default.
- W3010435708 cites W2012692338 @default.
- W3010435708 cites W2014893623 @default.
- W3010435708 cites W2025165202 @default.
- W3010435708 cites W2027554150 @default.
- W3010435708 cites W2029201786 @default.
- W3010435708 cites W2030359435 @default.
- W3010435708 cites W2044115647 @default.
- W3010435708 cites W2044323528 @default.
- W3010435708 cites W2047111475 @default.
- W3010435708 cites W2057382722 @default.
- W3010435708 cites W2058562496 @default.
- W3010435708 cites W2061425049 @default.
- W3010435708 cites W2062680809 @default.
- W3010435708 cites W2064351615 @default.
- W3010435708 cites W2069642132 @default.
- W3010435708 cites W2070493638 @default.
- W3010435708 cites W2073528115 @default.
- W3010435708 cites W2073644713 @default.
- W3010435708 cites W2074552656 @default.
- W3010435708 cites W2082742064 @default.
- W3010435708 cites W2115128296 @default.
- W3010435708 cites W2133335186 @default.
- W3010435708 cites W2147330627 @default.
- W3010435708 cites W2148661505 @default.
- W3010435708 cites W2159994578 @default.
- W3010435708 cites W2164512472 @default.
- W3010435708 cites W2317200742 @default.
- W3010435708 cites W2350514175 @default.
- W3010435708 cites W2559152590 @default.
- W3010435708 cites W2625701768 @default.
- W3010435708 cites W2626844099 @default.
- W3010435708 cites W2726382703 @default.
- W3010435708 cites W2739165470 @default.
- W3010435708 cites W2739726114 @default.
- W3010435708 cites W2753449839 @default.
- W3010435708 cites W2755905524 @default.
- W3010435708 cites W2765710612 @default.
- W3010435708 cites W2776151220 @default.
- W3010435708 cites W2783516604 @default.
- W3010435708 cites W2793952786 @default.
- W3010435708 cites W2797109476 @default.
- W3010435708 cites W2799768477 @default.
- W3010435708 cites W2808616224 @default.
- W3010435708 cites W2888238379 @default.
- W3010435708 cites W2904699764 @default.
- W3010435708 cites W2909254694 @default.
- W3010435708 cites W2911964244 @default.
- W3010435708 cites W2914965248 @default.
- W3010435708 cites W2939928047 @default.
- W3010435708 cites W2966066887 @default.
- W3010435708 cites W2995221111 @default.
- W3010435708 doi "https://doi.org/10.1016/j.envpol.2020.114308" @default.
- W3010435708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32155557" @default.
- W3010435708 hasPublicationYear "2020" @default.
- W3010435708 type Work @default.
- W3010435708 sameAs 3010435708 @default.
- W3010435708 citedByCount "109" @default.
- W3010435708 countsByYear W30104357082020 @default.
- W3010435708 countsByYear W30104357082021 @default.
- W3010435708 countsByYear W30104357082022 @default.
- W3010435708 countsByYear W30104357082023 @default.
- W3010435708 crossrefType "journal-article" @default.
- W3010435708 hasAuthorship W3010435708A5015984879 @default.
- W3010435708 hasAuthorship W3010435708A5016449371 @default.
- W3010435708 hasAuthorship W3010435708A5036169699 @default.
- W3010435708 hasAuthorship W3010435708A5036411979 @default.
- W3010435708 hasAuthorship W3010435708A5038986917 @default.
- W3010435708 hasAuthorship W3010435708A5058480306 @default.
- W3010435708 hasAuthorship W3010435708A5071386168 @default.