Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010467273> ?p ?o ?g. }
- W3010467273 abstract "Demand side load prediction is one of the most challenging tasks in smart grid environment due to uncertainties between demand and supply. Hence, in order to overcome this issue, this paper presents a scheme based on machine learning and deep learning for energy load forecasting by considering the weather condition of the area. We propose a two-tier Ensemble model, which ensembles the results of machine learning model (Support Vector Machine) and deep learning models (Convolu- tional Neural Network One Dimensional and Long Term Short memory) with a simple neural network to predict the load and demand gap. Then, we train and test the model with the UMass Smart* Dataset - 2017 release by taking the readings of appliances and weather conditions. The experimental results demonstrate that the proposed scheme has a significant improvement over the existing load forecasting methods having short-term and long- term load prediction models with an overall accuracy of 95.6%" @default.
- W3010467273 created "2020-03-13" @default.
- W3010467273 creator A5018991440 @default.
- W3010467273 creator A5037688054 @default.
- W3010467273 creator A5059682217 @default.
- W3010467273 creator A5071186894 @default.
- W3010467273 creator A5078422589 @default.
- W3010467273 creator A5082957370 @default.
- W3010467273 date "2019-12-01" @default.
- W3010467273 modified "2023-10-14" @default.
- W3010467273 title "Two-Tier Ensemble Model for Demand Side Prediction in Smart Grid Environment" @default.
- W3010467273 cites W1538131130 @default.
- W3010467273 cites W1821462560 @default.
- W3010467273 cites W1899402344 @default.
- W3010467273 cites W1904365287 @default.
- W3010467273 cites W1980651016 @default.
- W3010467273 cites W2022166137 @default.
- W3010467273 cites W2055522016 @default.
- W3010467273 cites W2075795701 @default.
- W3010467273 cites W2076769467 @default.
- W3010467273 cites W2087003855 @default.
- W3010467273 cites W2091693228 @default.
- W3010467273 cites W2146507030 @default.
- W3010467273 cites W2159514557 @default.
- W3010467273 cites W2172064003 @default.
- W3010467273 cites W2295959395 @default.
- W3010467273 cites W2742473260 @default.
- W3010467273 cites W2788553534 @default.
- W3010467273 cites W2949117887 @default.
- W3010467273 cites W2964121744 @default.
- W3010467273 doi "https://doi.org/10.1109/globecom38437.2019.9013536" @default.
- W3010467273 hasPublicationYear "2019" @default.
- W3010467273 type Work @default.
- W3010467273 sameAs 3010467273 @default.
- W3010467273 citedByCount "0" @default.
- W3010467273 crossrefType "proceedings-article" @default.
- W3010467273 hasAuthorship W3010467273A5018991440 @default.
- W3010467273 hasAuthorship W3010467273A5037688054 @default.
- W3010467273 hasAuthorship W3010467273A5059682217 @default.
- W3010467273 hasAuthorship W3010467273A5071186894 @default.
- W3010467273 hasAuthorship W3010467273A5078422589 @default.
- W3010467273 hasAuthorship W3010467273A5082957370 @default.
- W3010467273 hasConcept C10558101 @default.
- W3010467273 hasConcept C108583219 @default.
- W3010467273 hasConcept C119599485 @default.
- W3010467273 hasConcept C119857082 @default.
- W3010467273 hasConcept C119898033 @default.
- W3010467273 hasConcept C121332964 @default.
- W3010467273 hasConcept C12267149 @default.
- W3010467273 hasConcept C127413603 @default.
- W3010467273 hasConcept C134306372 @default.
- W3010467273 hasConcept C154945302 @default.
- W3010467273 hasConcept C187691185 @default.
- W3010467273 hasConcept C193809577 @default.
- W3010467273 hasConcept C206658404 @default.
- W3010467273 hasConcept C2524010 @default.
- W3010467273 hasConcept C2779438525 @default.
- W3010467273 hasConcept C2780150128 @default.
- W3010467273 hasConcept C33923547 @default.
- W3010467273 hasConcept C41008148 @default.
- W3010467273 hasConcept C42475967 @default.
- W3010467273 hasConcept C45942800 @default.
- W3010467273 hasConcept C50644808 @default.
- W3010467273 hasConcept C61797465 @default.
- W3010467273 hasConcept C62520636 @default.
- W3010467273 hasConcept C77618280 @default.
- W3010467273 hasConceptScore W3010467273C10558101 @default.
- W3010467273 hasConceptScore W3010467273C108583219 @default.
- W3010467273 hasConceptScore W3010467273C119599485 @default.
- W3010467273 hasConceptScore W3010467273C119857082 @default.
- W3010467273 hasConceptScore W3010467273C119898033 @default.
- W3010467273 hasConceptScore W3010467273C121332964 @default.
- W3010467273 hasConceptScore W3010467273C12267149 @default.
- W3010467273 hasConceptScore W3010467273C127413603 @default.
- W3010467273 hasConceptScore W3010467273C134306372 @default.
- W3010467273 hasConceptScore W3010467273C154945302 @default.
- W3010467273 hasConceptScore W3010467273C187691185 @default.
- W3010467273 hasConceptScore W3010467273C193809577 @default.
- W3010467273 hasConceptScore W3010467273C206658404 @default.
- W3010467273 hasConceptScore W3010467273C2524010 @default.
- W3010467273 hasConceptScore W3010467273C2779438525 @default.
- W3010467273 hasConceptScore W3010467273C2780150128 @default.
- W3010467273 hasConceptScore W3010467273C33923547 @default.
- W3010467273 hasConceptScore W3010467273C41008148 @default.
- W3010467273 hasConceptScore W3010467273C42475967 @default.
- W3010467273 hasConceptScore W3010467273C45942800 @default.
- W3010467273 hasConceptScore W3010467273C50644808 @default.
- W3010467273 hasConceptScore W3010467273C61797465 @default.
- W3010467273 hasConceptScore W3010467273C62520636 @default.
- W3010467273 hasConceptScore W3010467273C77618280 @default.
- W3010467273 hasLocation W30104672731 @default.
- W3010467273 hasOpenAccess W3010467273 @default.
- W3010467273 hasPrimaryLocation W30104672731 @default.
- W3010467273 hasRelatedWork W11883665 @default.
- W3010467273 hasRelatedWork W11910705 @default.
- W3010467273 hasRelatedWork W11917578 @default.
- W3010467273 hasRelatedWork W12428677 @default.
- W3010467273 hasRelatedWork W14430987 @default.
- W3010467273 hasRelatedWork W1678066 @default.
- W3010467273 hasRelatedWork W3662195 @default.