Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010501026> ?p ?o ?g. }
- W3010501026 endingPage "4445" @default.
- W3010501026 startingPage "4435" @default.
- W3010501026 abstract "Improving nitrogen use efficiency (NUE) at both the individual cow and the herd level has become a key target in dairy production systems, for both environmental and economic reasons. Cost-effective and large-scale phenotyping methods are required to improve NUE through genetic selection and by feeding and management strategies. The aim of this study was to evaluate the possibility of using mid-infrared (MIR) spectra of milk to predict individual dairy cow NUE during early lactation. Data were collected from 129 Holstein cows, from calving until 50 d in milk, in 3 research herds (Denmark, Ireland, and the UK). In 2 of the herds, diets were designed to challenge cows metabolically, whereas a diet reflecting local management practices was offered in the third herd. Nitrogen intake (kg/d) and nitrogen excreted in milk (kg/d) were calculated daily. Nitrogen use efficiency was calculated as the ratio between nitrogen in milk and nitrogen intake, and expressed as a percentage. Individual daily values for NUE ranged from 9.7 to 81.7%, with an average of 36.9% and standard deviation of 10.4%. Milk MIR spectra were recorded twice weekly and were standardized into a common format to avoid bias between apparatus or sampling periods. Regression models predicting NUE using milk MIR spectra were developed on 1,034 observations using partial least squares or support vector machines regression methods. The models were then evaluated through (1) a cross-validation using 10 subsets, (2) a cow validation excluding 25% of the cows to be used as a validation set, and (3) a diet validation excluding each of the diets one by one to be used as validation sets. The best statistical performances were obtained when using the support vector machines method. Inclusion of milk yield and lactation number as predictors, in combination with the spectra, also improved the calibration. In cross-validation, the best model predicted NUE with a coefficient of determination of cross-validation of 0.74 and a relative error of 14%, which is suitable to discriminate between low- and high-NUE cows. When performing the cow validation, the relative error remained at 14%, and during the diet validation the relative error ranged from 12 to 34%. In the diet validation, the models showed a lack of robustness, demonstrating difficulties in predicting NUE for diets and for samples that were not represented in the calibration data set. Hence, a need exists to integrate more data in the models to cover a maximum of variability regarding breeds, diets, lactation stages, management practices, seasons, MIR instruments, and geographic regions. Although the model needs to be validated and improved for use in routine conditions, these preliminary results showed that it was possible to obtain information on NUE through milk MIR spectra. This could potentially allow large-scale predictions to aid both further genetic and genomic studies, and the development of farm management tools." @default.
- W3010501026 created "2020-03-13" @default.
- W3010501026 creator A5002767358 @default.
- W3010501026 creator A5010886802 @default.
- W3010501026 creator A5013892025 @default.
- W3010501026 creator A5020625264 @default.
- W3010501026 creator A5022219619 @default.
- W3010501026 creator A5038133264 @default.
- W3010501026 creator A5045137302 @default.
- W3010501026 creator A5052695473 @default.
- W3010501026 creator A5065664811 @default.
- W3010501026 creator A5066085751 @default.
- W3010501026 creator A5072754453 @default.
- W3010501026 creator A5089016003 @default.
- W3010501026 creator A5089257240 @default.
- W3010501026 date "2020-05-01" @default.
- W3010501026 modified "2023-10-17" @default.
- W3010501026 title "Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation" @default.
- W3010501026 cites W117017643 @default.
- W3010501026 cites W1978357956 @default.
- W3010501026 cites W1979573876 @default.
- W3010501026 cites W2008942861 @default.
- W3010501026 cites W2032844392 @default.
- W3010501026 cites W2046295780 @default.
- W3010501026 cites W2053559523 @default.
- W3010501026 cites W2063624820 @default.
- W3010501026 cites W2091614621 @default.
- W3010501026 cites W2096908789 @default.
- W3010501026 cites W2101344934 @default.
- W3010501026 cites W2108611823 @default.
- W3010501026 cites W2111882425 @default.
- W3010501026 cites W2123992827 @default.
- W3010501026 cites W2125487311 @default.
- W3010501026 cites W2165241545 @default.
- W3010501026 cites W2167692544 @default.
- W3010501026 cites W2287904325 @default.
- W3010501026 cites W2303320765 @default.
- W3010501026 cites W2615033558 @default.
- W3010501026 cites W2738536068 @default.
- W3010501026 cites W2797746061 @default.
- W3010501026 cites W2885385503 @default.
- W3010501026 cites W2911886673 @default.
- W3010501026 cites W2916999935 @default.
- W3010501026 cites W2943986510 @default.
- W3010501026 cites W31036177 @default.
- W3010501026 doi "https://doi.org/10.3168/jds.2019-17910" @default.
- W3010501026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32147266" @default.
- W3010501026 hasPublicationYear "2020" @default.
- W3010501026 type Work @default.
- W3010501026 sameAs 3010501026 @default.
- W3010501026 citedByCount "27" @default.
- W3010501026 countsByYear W30105010262020 @default.
- W3010501026 countsByYear W30105010262021 @default.
- W3010501026 countsByYear W30105010262022 @default.
- W3010501026 countsByYear W30105010262023 @default.
- W3010501026 crossrefType "journal-article" @default.
- W3010501026 hasAuthorship W3010501026A5002767358 @default.
- W3010501026 hasAuthorship W3010501026A5010886802 @default.
- W3010501026 hasAuthorship W3010501026A5013892025 @default.
- W3010501026 hasAuthorship W3010501026A5020625264 @default.
- W3010501026 hasAuthorship W3010501026A5022219619 @default.
- W3010501026 hasAuthorship W3010501026A5038133264 @default.
- W3010501026 hasAuthorship W3010501026A5045137302 @default.
- W3010501026 hasAuthorship W3010501026A5052695473 @default.
- W3010501026 hasAuthorship W3010501026A5065664811 @default.
- W3010501026 hasAuthorship W3010501026A5066085751 @default.
- W3010501026 hasAuthorship W3010501026A5072754453 @default.
- W3010501026 hasAuthorship W3010501026A5089016003 @default.
- W3010501026 hasAuthorship W3010501026A5089257240 @default.
- W3010501026 hasBestOaLocation W30105010261 @default.
- W3010501026 hasConcept C105795698 @default.
- W3010501026 hasConcept C140793950 @default.
- W3010501026 hasConcept C178790620 @default.
- W3010501026 hasConcept C185592680 @default.
- W3010501026 hasConcept C194775826 @default.
- W3010501026 hasConcept C22354355 @default.
- W3010501026 hasConcept C22641795 @default.
- W3010501026 hasConcept C2776659692 @default.
- W3010501026 hasConcept C2776977481 @default.
- W3010501026 hasConcept C2779234561 @default.
- W3010501026 hasConcept C33923547 @default.
- W3010501026 hasConcept C537208039 @default.
- W3010501026 hasConcept C54355233 @default.
- W3010501026 hasConcept C86803240 @default.
- W3010501026 hasConceptScore W3010501026C105795698 @default.
- W3010501026 hasConceptScore W3010501026C140793950 @default.
- W3010501026 hasConceptScore W3010501026C178790620 @default.
- W3010501026 hasConceptScore W3010501026C185592680 @default.
- W3010501026 hasConceptScore W3010501026C194775826 @default.
- W3010501026 hasConceptScore W3010501026C22354355 @default.
- W3010501026 hasConceptScore W3010501026C22641795 @default.
- W3010501026 hasConceptScore W3010501026C2776659692 @default.
- W3010501026 hasConceptScore W3010501026C2776977481 @default.
- W3010501026 hasConceptScore W3010501026C2779234561 @default.
- W3010501026 hasConceptScore W3010501026C33923547 @default.
- W3010501026 hasConceptScore W3010501026C537208039 @default.
- W3010501026 hasConceptScore W3010501026C54355233 @default.
- W3010501026 hasConceptScore W3010501026C86803240 @default.