Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010584812> ?p ?o ?g. }
- W3010584812 endingPage "4872" @default.
- W3010584812 startingPage "4862" @default.
- W3010584812 abstract "Phase unwrapping is an ill-posed classical problem in many practical applications of significance such as 3D profiling through fringe projection, synthetic aperture radar and magnetic resonance imaging. Conventional phase unwrapping techniques estimate the phase either by integrating through the confined path (referred to as path-following methods) or by minimizing the energy function between the wrapped phase and the approximated true phase (referred to as minimum-norm approaches). However, these conventional methods have some critical challenges like error accumulation and high computational time and often fail under low SNR conditions. To address these problems, this paper proposes a novel deep learning framework for unwrapping the phase and is referred to as “PhaseNet 2.0”. The phase unwrapping problem is formulated as a dense classification problem and a fully convolutional DenseNet based neural network is trained to predict the wrap-count at each pixel from the wrapped phase maps. To train this network, we simulate arbitrary shapes and propose new loss function that integrates the residues by minimizing the difference of gradients and also uses L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> loss to overcome class imbalance problem. The proposed method, unlike our previous approach PhaseNet, does not require post-processing, highly robust to noise, accurately unwraps the phase even at the severe noise level of -5 dB, and can unwrap the phase maps even at relatively high dynamic ranges. Simulation results from the proposed framework are compared with different classes of existing phase unwrapping methods for varying SNR values and discontinuity, and these evaluations demonstrate the advantages of the proposed framework. We also demonstrate the generality of the proposed method on 3D reconstruction of synthetic CAD models that have diverse structures and finer geometric variations. Finally, the proposed method is applied to real-data for 3D profiling of objects using fringe projection technique and digital holographic interferometry. The proposed framework achieves significant improvements over existing methods while being highly efficient with interactive frame-rates on modern GPUs." @default.
- W3010584812 created "2020-03-13" @default.
- W3010584812 creator A5000676745 @default.
- W3010584812 creator A5001231357 @default.
- W3010584812 creator A5014702481 @default.
- W3010584812 date "2020-01-01" @default.
- W3010584812 modified "2023-10-16" @default.
- W3010584812 title "PhaseNet 2.0: Phase Unwrapping of Noisy Data Based on Deep Learning Approach" @default.
- W3010584812 cites W1670596404 @default.
- W3010584812 cites W1677182931 @default.
- W3010584812 cites W1894563927 @default.
- W3010584812 cites W1903029394 @default.
- W3010584812 cites W1964535464 @default.
- W3010584812 cites W1973488478 @default.
- W3010584812 cites W1979298089 @default.
- W3010584812 cites W1982681532 @default.
- W3010584812 cites W2009281790 @default.
- W3010584812 cites W2031157389 @default.
- W3010584812 cites W2036330938 @default.
- W3010584812 cites W2068432128 @default.
- W3010584812 cites W2080611403 @default.
- W3010584812 cites W2091764829 @default.
- W3010584812 cites W2096101715 @default.
- W3010584812 cites W2102605133 @default.
- W3010584812 cites W2104636240 @default.
- W3010584812 cites W2127996129 @default.
- W3010584812 cites W2130204909 @default.
- W3010584812 cites W2131147191 @default.
- W3010584812 cites W2139382721 @default.
- W3010584812 cites W2159006012 @default.
- W3010584812 cites W2172263470 @default.
- W3010584812 cites W2230653175 @default.
- W3010584812 cites W2323475746 @default.
- W3010584812 cites W2325708443 @default.
- W3010584812 cites W2465169776 @default.
- W3010584812 cites W2559597482 @default.
- W3010584812 cites W2560689942 @default.
- W3010584812 cites W2617150165 @default.
- W3010584812 cites W2768099879 @default.
- W3010584812 cites W2789421388 @default.
- W3010584812 cites W2789955947 @default.
- W3010584812 cites W2799224898 @default.
- W3010584812 cites W2804654620 @default.
- W3010584812 cites W2808799659 @default.
- W3010584812 cites W2889477358 @default.
- W3010584812 cites W2900139389 @default.
- W3010584812 cites W2944537797 @default.
- W3010584812 cites W2944779716 @default.
- W3010584812 cites W2963446712 @default.
- W3010584812 cites W2963881378 @default.
- W3010584812 cites W2965034661 @default.
- W3010584812 cites W3101025873 @default.
- W3010584812 doi "https://doi.org/10.1109/tip.2020.2977213" @default.
- W3010584812 hasPublicationYear "2020" @default.
- W3010584812 type Work @default.
- W3010584812 sameAs 3010584812 @default.
- W3010584812 citedByCount "90" @default.
- W3010584812 countsByYear W30105848122020 @default.
- W3010584812 countsByYear W30105848122021 @default.
- W3010584812 countsByYear W30105848122022 @default.
- W3010584812 countsByYear W30105848122023 @default.
- W3010584812 crossrefType "journal-article" @default.
- W3010584812 hasAuthorship W3010584812A5000676745 @default.
- W3010584812 hasAuthorship W3010584812A5001231357 @default.
- W3010584812 hasAuthorship W3010584812A5014702481 @default.
- W3010584812 hasConcept C108583219 @default.
- W3010584812 hasConcept C11413529 @default.
- W3010584812 hasConcept C121332964 @default.
- W3010584812 hasConcept C1276947 @default.
- W3010584812 hasConcept C154945302 @default.
- W3010584812 hasConcept C160633673 @default.
- W3010584812 hasConcept C166689943 @default.
- W3010584812 hasConcept C178790620 @default.
- W3010584812 hasConcept C185592680 @default.
- W3010584812 hasConcept C3020654733 @default.
- W3010584812 hasConcept C41008148 @default.
- W3010584812 hasConcept C44280652 @default.
- W3010584812 hasConcept C81363708 @default.
- W3010584812 hasConcept C87360688 @default.
- W3010584812 hasConceptScore W3010584812C108583219 @default.
- W3010584812 hasConceptScore W3010584812C11413529 @default.
- W3010584812 hasConceptScore W3010584812C121332964 @default.
- W3010584812 hasConceptScore W3010584812C1276947 @default.
- W3010584812 hasConceptScore W3010584812C154945302 @default.
- W3010584812 hasConceptScore W3010584812C160633673 @default.
- W3010584812 hasConceptScore W3010584812C166689943 @default.
- W3010584812 hasConceptScore W3010584812C178790620 @default.
- W3010584812 hasConceptScore W3010584812C185592680 @default.
- W3010584812 hasConceptScore W3010584812C3020654733 @default.
- W3010584812 hasConceptScore W3010584812C41008148 @default.
- W3010584812 hasConceptScore W3010584812C44280652 @default.
- W3010584812 hasConceptScore W3010584812C81363708 @default.
- W3010584812 hasConceptScore W3010584812C87360688 @default.
- W3010584812 hasLocation W30105848121 @default.
- W3010584812 hasOpenAccess W3010584812 @default.
- W3010584812 hasPrimaryLocation W30105848121 @default.
- W3010584812 hasRelatedWork W2049638722 @default.
- W3010584812 hasRelatedWork W2156323486 @default.