Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010717969> ?p ?o ?g. }
- W3010717969 endingPage "111748" @default.
- W3010717969 startingPage "111748" @default.
- W3010717969 abstract "Accurate representations of canopy cover are essential for directing natural resource management efforts targeted at issues such as carbon storage, habitat modeling, fire spread, water resources, and ecosystem services. A two-phase classification approach utilizing an iterative classification of high-resolution aerial imagery to develop training data for a regional-scale classification of percentage woody canopy cover (PWCC) using Sentinel-2 imagery is presented in this study, and is tested for a large portion of South Texas (9,200,000 ha). The modeled PWCC for the study area belonged to the respective classes as follows, PWCC0 = 26%, PWCC90 = 14%, PWCC10 = 12%, PWCC80 = 8%, PWCC20 = 7%, PWCC30 = 7%, PWCC70 = 6%, PWCC50 = 5%, PWCC40 = 5%, and PWCC60 = 5%. Statistics indicated that the overall weighted accuracy for the mapped PWCC classes (Aow) was 0.82 and that the overall weighted kappa (k̂w) was 0.49. To demonstrate the usefulness of the PWCC mapping approach to produce reasonable canopy cover estimates, the relative accuracies of modeled PWCC and other similar canopy cover products (LANDFIRE, NLCD) for the study area were summarized. MAE and RSS values were calculated based on five sample areas of directly measured LiDAR canopy cover estimates. The PWCC mapping approach presented here exhibited significantly MAE values for 5 out of 5 sample areas, and lower RSS values for 4 of 5 sample areas. By class MAE and RSS values were lower for all percentage cover classes. Overall, comparisons of the mapping result with high-resolution aerial imagery and the quantitative assessments indicated that the approach presented here was effective for developing highly detailed canopy cover estimates that can be used for planning and modeling at multiple scales (e.g. regional or local). Additionally, this approach can be employed by individual researchers and is less time and resource consumptive when compared to other large scale approaches. To date, only a limited number of existing studies have focused on approaches that can be used to map tree canopy cover for large areas." @default.
- W3010717969 created "2020-03-23" @default.
- W3010717969 creator A5010313795 @default.
- W3010717969 creator A5032018285 @default.
- W3010717969 creator A5036902490 @default.
- W3010717969 creator A5049904289 @default.
- W3010717969 creator A5077194985 @default.
- W3010717969 date "2020-06-01" @default.
- W3010717969 modified "2023-09-23" @default.
- W3010717969 title "Mapping high-resolution percentage canopy cover using a multi-sensor approach" @default.
- W3010717969 cites W1948133483 @default.
- W3010717969 cites W1966150921 @default.
- W3010717969 cites W1983848131 @default.
- W3010717969 cites W1990653740 @default.
- W3010717969 cites W2001618165 @default.
- W3010717969 cites W2030337367 @default.
- W3010717969 cites W2037778989 @default.
- W3010717969 cites W2039240409 @default.
- W3010717969 cites W2059523177 @default.
- W3010717969 cites W2061587573 @default.
- W3010717969 cites W2061918237 @default.
- W3010717969 cites W2080401607 @default.
- W3010717969 cites W2094677081 @default.
- W3010717969 cites W2110588562 @default.
- W3010717969 cites W2124070575 @default.
- W3010717969 cites W2132424470 @default.
- W3010717969 cites W2151549592 @default.
- W3010717969 cites W2153820558 @default.
- W3010717969 cites W2194751616 @default.
- W3010717969 cites W2402918396 @default.
- W3010717969 cites W2470140782 @default.
- W3010717969 cites W2604086375 @default.
- W3010717969 cites W2765929747 @default.
- W3010717969 cites W2898152330 @default.
- W3010717969 doi "https://doi.org/10.1016/j.rse.2020.111748" @default.
- W3010717969 hasPublicationYear "2020" @default.
- W3010717969 type Work @default.
- W3010717969 sameAs 3010717969 @default.
- W3010717969 citedByCount "6" @default.
- W3010717969 countsByYear W30107179692020 @default.
- W3010717969 countsByYear W30107179692021 @default.
- W3010717969 countsByYear W30107179692022 @default.
- W3010717969 countsByYear W30107179692023 @default.
- W3010717969 crossrefType "journal-article" @default.
- W3010717969 hasAuthorship W3010717969A5010313795 @default.
- W3010717969 hasAuthorship W3010717969A5032018285 @default.
- W3010717969 hasAuthorship W3010717969A5036902490 @default.
- W3010717969 hasAuthorship W3010717969A5049904289 @default.
- W3010717969 hasAuthorship W3010717969A5077194985 @default.
- W3010717969 hasConcept C101000010 @default.
- W3010717969 hasConcept C111919701 @default.
- W3010717969 hasConcept C127413603 @default.
- W3010717969 hasConcept C166957645 @default.
- W3010717969 hasConcept C185592680 @default.
- W3010717969 hasConcept C18903297 @default.
- W3010717969 hasConcept C198531522 @default.
- W3010717969 hasConcept C205649164 @default.
- W3010717969 hasConcept C2385561 @default.
- W3010717969 hasConcept C2778755073 @default.
- W3010717969 hasConcept C2780428219 @default.
- W3010717969 hasConcept C2780648208 @default.
- W3010717969 hasConcept C39432304 @default.
- W3010717969 hasConcept C39807119 @default.
- W3010717969 hasConcept C41008148 @default.
- W3010717969 hasConcept C43617362 @default.
- W3010717969 hasConcept C4792198 @default.
- W3010717969 hasConcept C51399673 @default.
- W3010717969 hasConcept C58640448 @default.
- W3010717969 hasConcept C62649853 @default.
- W3010717969 hasConcept C78519656 @default.
- W3010717969 hasConcept C86803240 @default.
- W3010717969 hasConceptScore W3010717969C101000010 @default.
- W3010717969 hasConceptScore W3010717969C111919701 @default.
- W3010717969 hasConceptScore W3010717969C127413603 @default.
- W3010717969 hasConceptScore W3010717969C166957645 @default.
- W3010717969 hasConceptScore W3010717969C185592680 @default.
- W3010717969 hasConceptScore W3010717969C18903297 @default.
- W3010717969 hasConceptScore W3010717969C198531522 @default.
- W3010717969 hasConceptScore W3010717969C205649164 @default.
- W3010717969 hasConceptScore W3010717969C2385561 @default.
- W3010717969 hasConceptScore W3010717969C2778755073 @default.
- W3010717969 hasConceptScore W3010717969C2780428219 @default.
- W3010717969 hasConceptScore W3010717969C2780648208 @default.
- W3010717969 hasConceptScore W3010717969C39432304 @default.
- W3010717969 hasConceptScore W3010717969C39807119 @default.
- W3010717969 hasConceptScore W3010717969C41008148 @default.
- W3010717969 hasConceptScore W3010717969C43617362 @default.
- W3010717969 hasConceptScore W3010717969C4792198 @default.
- W3010717969 hasConceptScore W3010717969C51399673 @default.
- W3010717969 hasConceptScore W3010717969C58640448 @default.
- W3010717969 hasConceptScore W3010717969C62649853 @default.
- W3010717969 hasConceptScore W3010717969C78519656 @default.
- W3010717969 hasConceptScore W3010717969C86803240 @default.
- W3010717969 hasFunder F4320310164 @default.
- W3010717969 hasLocation W30107179691 @default.
- W3010717969 hasOpenAccess W3010717969 @default.
- W3010717969 hasPrimaryLocation W30107179691 @default.
- W3010717969 hasRelatedWork W1967448081 @default.