Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010745523> ?p ?o ?g. }
- W3010745523 endingPage "102899" @default.
- W3010745523 startingPage "102899" @default.
- W3010745523 abstract "Advances in tourism demand forecasting immensely benefit tourism and other sectors, such as economic and resource management studies. However, even for novel AI-based methodologies, the challenge of limited available data causing model overfitting and high complexity in forecasting models remains a major problem. This study proposes a novel group-pooling-based deep-learning model (GP–DLM) to address these problems and improve model accuracy. Specifically, with our group-pooling method, we advance the tourism forecasting literature with the following findings. First, GP–DLM provides superior accuracy in comparison with benchmark models. Second, we define the novel dynamic time warping (DTW) clustering quantitative approach. Third, we reveal cross-region factors that influence travel demands of the studied regions, including “travel blog,” “best food,” and “Air Asia.”" @default.
- W3010745523 created "2020-03-23" @default.
- W3010745523 creator A5005460332 @default.
- W3010745523 creator A5024640615 @default.
- W3010745523 creator A5034313244 @default.
- W3010745523 creator A5055008271 @default.
- W3010745523 creator A5063772764 @default.
- W3010745523 date "2020-05-01" @default.
- W3010745523 modified "2023-10-14" @default.
- W3010745523 title "Group pooling for deep tourism demand forecasting" @default.
- W3010745523 cites W1982070737 @default.
- W3010745523 cites W2006746888 @default.
- W3010745523 cites W2010611103 @default.
- W3010745523 cites W2025391890 @default.
- W3010745523 cites W2025986292 @default.
- W3010745523 cites W2030339726 @default.
- W3010745523 cites W2038642139 @default.
- W3010745523 cites W2056499248 @default.
- W3010745523 cites W2064140702 @default.
- W3010745523 cites W2065293388 @default.
- W3010745523 cites W2080761477 @default.
- W3010745523 cites W2086074129 @default.
- W3010745523 cites W2091921805 @default.
- W3010745523 cites W2098584872 @default.
- W3010745523 cites W2118248224 @default.
- W3010745523 cites W2126622800 @default.
- W3010745523 cites W2128130077 @default.
- W3010745523 cites W2130778342 @default.
- W3010745523 cites W2151554678 @default.
- W3010745523 cites W2153797534 @default.
- W3010745523 cites W2157220551 @default.
- W3010745523 cites W2158994553 @default.
- W3010745523 cites W2213612645 @default.
- W3010745523 cites W2400522988 @default.
- W3010745523 cites W2500086770 @default.
- W3010745523 cites W2526724998 @default.
- W3010745523 cites W2556579681 @default.
- W3010745523 cites W2585667993 @default.
- W3010745523 cites W2597866042 @default.
- W3010745523 cites W2788908805 @default.
- W3010745523 cites W2789902053 @default.
- W3010745523 cites W2798990976 @default.
- W3010745523 cites W2886794263 @default.
- W3010745523 cites W2894665096 @default.
- W3010745523 cites W2902499798 @default.
- W3010745523 cites W2911894136 @default.
- W3010745523 cites W2913175090 @default.
- W3010745523 cites W2914454487 @default.
- W3010745523 cites W2939094371 @default.
- W3010745523 cites W2939264787 @default.
- W3010745523 cites W2953540213 @default.
- W3010745523 cites W3121624457 @default.
- W3010745523 cites W759318030 @default.
- W3010745523 doi "https://doi.org/10.1016/j.annals.2020.102899" @default.
- W3010745523 hasPublicationYear "2020" @default.
- W3010745523 type Work @default.
- W3010745523 sameAs 3010745523 @default.
- W3010745523 citedByCount "40" @default.
- W3010745523 countsByYear W30107455232020 @default.
- W3010745523 countsByYear W30107455232021 @default.
- W3010745523 countsByYear W30107455232022 @default.
- W3010745523 countsByYear W30107455232023 @default.
- W3010745523 crossrefType "journal-article" @default.
- W3010745523 hasAuthorship W3010745523A5005460332 @default.
- W3010745523 hasAuthorship W3010745523A5024640615 @default.
- W3010745523 hasAuthorship W3010745523A5034313244 @default.
- W3010745523 hasAuthorship W3010745523A5055008271 @default.
- W3010745523 hasAuthorship W3010745523A5063772764 @default.
- W3010745523 hasBestOaLocation W30107455232 @default.
- W3010745523 hasConcept C108583219 @default.
- W3010745523 hasConcept C119857082 @default.
- W3010745523 hasConcept C127413603 @default.
- W3010745523 hasConcept C154945302 @default.
- W3010745523 hasConcept C166957645 @default.
- W3010745523 hasConcept C185798385 @default.
- W3010745523 hasConcept C18918823 @default.
- W3010745523 hasConcept C193809577 @default.
- W3010745523 hasConcept C205649164 @default.
- W3010745523 hasConcept C22019652 @default.
- W3010745523 hasConcept C41008148 @default.
- W3010745523 hasConcept C42475967 @default.
- W3010745523 hasConcept C50644808 @default.
- W3010745523 hasConcept C58640448 @default.
- W3010745523 hasConcept C70437156 @default.
- W3010745523 hasConcept C73555534 @default.
- W3010745523 hasConceptScore W3010745523C108583219 @default.
- W3010745523 hasConceptScore W3010745523C119857082 @default.
- W3010745523 hasConceptScore W3010745523C127413603 @default.
- W3010745523 hasConceptScore W3010745523C154945302 @default.
- W3010745523 hasConceptScore W3010745523C166957645 @default.
- W3010745523 hasConceptScore W3010745523C185798385 @default.
- W3010745523 hasConceptScore W3010745523C18918823 @default.
- W3010745523 hasConceptScore W3010745523C193809577 @default.
- W3010745523 hasConceptScore W3010745523C205649164 @default.
- W3010745523 hasConceptScore W3010745523C22019652 @default.
- W3010745523 hasConceptScore W3010745523C41008148 @default.
- W3010745523 hasConceptScore W3010745523C42475967 @default.
- W3010745523 hasConceptScore W3010745523C50644808 @default.