Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010783886> ?p ?o ?g. }
- W3010783886 endingPage "1912" @default.
- W3010783886 startingPage "1912" @default.
- W3010783886 abstract "One of the most important applications of remote imaging systems in agriculture, with the greatest impact on global sustainability, is the determination of optimal crop irrigation. The methodology proposed by the Food and Agriculture Organization (FAO) is based on estimating crop evapotranspiration (ETc), which is done by computing the reference crop evapotranspiration (ETo) multiplied by a crop coefficient (Kc). Some previous works proposed methods to compute Kc using remote crop images. The present research aims at complementing these systems, estimating ETo with the use of soil moisture sensors. A crop of kikuyu grass (Pennisetum clandestinum) was used as the reference crop. Four frequency-domain reflectometry sensors were installed, gathering moisture information during the study period from May 2015 to September 2016. Different machine learning regression algorithms were analyzed for the estimation of ETo using moisture and climatic data. The values were compared with respect to the ETo computed in an agroclimatic station using the Penman–Monteith method. The best method was the randomizable filtered classifier technique, based on the K* algorithm. This model achieved a correlation coefficient, R, of 0.9936, with a root-mean-squared error of 0.183 mm/day and 6.52% mean relative error; the second-best model used artificial neural networks, with an R of 0.9470 and 11% relative error. Thus, this new methodology allows obtaining accurate and cost-efficient prediction models for ETo, as well as for the water balance of the crops." @default.
- W3010783886 created "2020-03-23" @default.
- W3010783886 creator A5001124584 @default.
- W3010783886 creator A5052086259 @default.
- W3010783886 creator A5067278785 @default.
- W3010783886 creator A5076924148 @default.
- W3010783886 creator A5086329238 @default.
- W3010783886 creator A5089424793 @default.
- W3010783886 date "2020-03-11" @default.
- W3010783886 modified "2023-10-17" @default.
- W3010783886 title "A Machine Learning Method to Estimate Reference Evapotranspiration Using Soil Moisture Sensors" @default.
- W3010783886 cites W1978128908 @default.
- W3010783886 cites W1981448549 @default.
- W3010783886 cites W1989755705 @default.
- W3010783886 cites W2003072142 @default.
- W3010783886 cites W2004625984 @default.
- W3010783886 cites W2005156666 @default.
- W3010783886 cites W2012903341 @default.
- W3010783886 cites W2019705178 @default.
- W3010783886 cites W2038209617 @default.
- W3010783886 cites W2043069277 @default.
- W3010783886 cites W2048869339 @default.
- W3010783886 cites W2051708915 @default.
- W3010783886 cites W2063155154 @default.
- W3010783886 cites W2063851248 @default.
- W3010783886 cites W2085187006 @default.
- W3010783886 cites W2088500306 @default.
- W3010783886 cites W2128326303 @default.
- W3010783886 cites W2162699697 @default.
- W3010783886 cites W2503605632 @default.
- W3010783886 cites W2561876439 @default.
- W3010783886 cites W2564344501 @default.
- W3010783886 cites W2574364622 @default.
- W3010783886 cites W2587629887 @default.
- W3010783886 cites W2588246881 @default.
- W3010783886 cites W2883113516 @default.
- W3010783886 cites W2886054370 @default.
- W3010783886 cites W2904027073 @default.
- W3010783886 cites W2913856130 @default.
- W3010783886 cites W2936443558 @default.
- W3010783886 cites W2980213960 @default.
- W3010783886 cites W2987084345 @default.
- W3010783886 cites W2991494645 @default.
- W3010783886 cites W2996605951 @default.
- W3010783886 cites W2998443257 @default.
- W3010783886 cites W3016150192 @default.
- W3010783886 doi "https://doi.org/10.3390/app10061912" @default.
- W3010783886 hasPublicationYear "2020" @default.
- W3010783886 type Work @default.
- W3010783886 sameAs 3010783886 @default.
- W3010783886 citedByCount "15" @default.
- W3010783886 countsByYear W30107838862020 @default.
- W3010783886 countsByYear W30107838862021 @default.
- W3010783886 countsByYear W30107838862022 @default.
- W3010783886 countsByYear W30107838862023 @default.
- W3010783886 crossrefType "journal-article" @default.
- W3010783886 hasAuthorship W3010783886A5001124584 @default.
- W3010783886 hasAuthorship W3010783886A5052086259 @default.
- W3010783886 hasAuthorship W3010783886A5067278785 @default.
- W3010783886 hasAuthorship W3010783886A5076924148 @default.
- W3010783886 hasAuthorship W3010783886A5086329238 @default.
- W3010783886 hasAuthorship W3010783886A5089424793 @default.
- W3010783886 hasBestOaLocation W30107838861 @default.
- W3010783886 hasConcept C105795698 @default.
- W3010783886 hasConcept C127413603 @default.
- W3010783886 hasConcept C139945424 @default.
- W3010783886 hasConcept C176783924 @default.
- W3010783886 hasConcept C187320778 @default.
- W3010783886 hasConcept C18903297 @default.
- W3010783886 hasConcept C205649164 @default.
- W3010783886 hasConcept C24939127 @default.
- W3010783886 hasConcept C33923547 @default.
- W3010783886 hasConcept C39432304 @default.
- W3010783886 hasConcept C41008148 @default.
- W3010783886 hasConcept C62649853 @default.
- W3010783886 hasConcept C6557445 @default.
- W3010783886 hasConcept C66465714 @default.
- W3010783886 hasConcept C72551326 @default.
- W3010783886 hasConcept C86803240 @default.
- W3010783886 hasConcept C88463610 @default.
- W3010783886 hasConcept C88862950 @default.
- W3010783886 hasConceptScore W3010783886C105795698 @default.
- W3010783886 hasConceptScore W3010783886C127413603 @default.
- W3010783886 hasConceptScore W3010783886C139945424 @default.
- W3010783886 hasConceptScore W3010783886C176783924 @default.
- W3010783886 hasConceptScore W3010783886C187320778 @default.
- W3010783886 hasConceptScore W3010783886C18903297 @default.
- W3010783886 hasConceptScore W3010783886C205649164 @default.
- W3010783886 hasConceptScore W3010783886C24939127 @default.
- W3010783886 hasConceptScore W3010783886C33923547 @default.
- W3010783886 hasConceptScore W3010783886C39432304 @default.
- W3010783886 hasConceptScore W3010783886C41008148 @default.
- W3010783886 hasConceptScore W3010783886C62649853 @default.
- W3010783886 hasConceptScore W3010783886C6557445 @default.
- W3010783886 hasConceptScore W3010783886C66465714 @default.
- W3010783886 hasConceptScore W3010783886C72551326 @default.
- W3010783886 hasConceptScore W3010783886C86803240 @default.
- W3010783886 hasConceptScore W3010783886C88463610 @default.