Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010799433> ?p ?o ?g. }
- W3010799433 endingPage "105321" @default.
- W3010799433 startingPage "105321" @default.
- W3010799433 abstract "Abstract Nitrogen (N) is the most limiting nutrient for cereal crop production, which often results in over-application of N fertilization to maximize crop yield. Negative environmental impacts and long-term reductions in productivity has encouraged site-specific N fertilization approaches, but these require timely and accurate crop N monitoring. The advent of hyperspectral remote sensing potentially provides a fast and economic way to accomplish this. A framework for hyperspectral remote sensing of cereal crop N is introduced, based on a comprehensive literature survey, to help inform monitoring best practices. Existing and potential crop N status indicators are summarized, with some recommendations provided. Hyperspectral analysis techniques for extracting N-related features are also examined and categorized into spatial domain and frequency domain based methods. In-depth analyses are conducted regarding: (1) the inconsistency in selected wavebands by different band selection methods and (2) determination of optimal wavelet, scale and wavelength in continuous wavelet transformations. Characteristics and deployment of machine learning based regression methods are also presented for crop N monitoring. Further, existing strategies to alleviate the ill-posed problem in physical and hybrid methods are outlined with some examples. Finally, the strengths and weaknesses of crop N retrieval methods are summarized to improve the understanding of how these methods affect prediction quality. Existing limitations and future areas of research emphasize on the fusion of crop N-related features from different domain spaces and the improved combination of empirical and physical methods." @default.
- W3010799433 created "2020-03-23" @default.
- W3010799433 creator A5000200794 @default.
- W3010799433 creator A5002508573 @default.
- W3010799433 creator A5007427445 @default.
- W3010799433 creator A5017381482 @default.
- W3010799433 creator A5020713851 @default.
- W3010799433 creator A5056724113 @default.
- W3010799433 creator A5069841884 @default.
- W3010799433 creator A5070651286 @default.
- W3010799433 creator A5076684952 @default.
- W3010799433 creator A5083396853 @default.
- W3010799433 creator A5088775960 @default.
- W3010799433 date "2020-05-01" @default.
- W3010799433 modified "2023-10-16" @default.
- W3010799433 title "Progress of hyperspectral data processing and modelling for cereal crop nitrogen monitoring" @default.
- W3010799433 cites W1535712589 @default.
- W3010799433 cites W1541175366 @default.
- W3010799433 cites W1888884532 @default.
- W3010799433 cites W1906130215 @default.
- W3010799433 cites W1953383193 @default.
- W3010799433 cites W1964324565 @default.
- W3010799433 cites W1966123034 @default.
- W3010799433 cites W1972038806 @default.
- W3010799433 cites W1972392539 @default.
- W3010799433 cites W1977084785 @default.
- W3010799433 cites W1978991768 @default.
- W3010799433 cites W1980865859 @default.
- W3010799433 cites W1987632496 @default.
- W3010799433 cites W1988872612 @default.
- W3010799433 cites W1991230437 @default.
- W3010799433 cites W1991668437 @default.
- W3010799433 cites W1996601340 @default.
- W3010799433 cites W1997185381 @default.
- W3010799433 cites W1998846529 @default.
- W3010799433 cites W2001323604 @default.
- W3010799433 cites W2008392120 @default.
- W3010799433 cites W2008988680 @default.
- W3010799433 cites W2009409575 @default.
- W3010799433 cites W2012132549 @default.
- W3010799433 cites W2014897524 @default.
- W3010799433 cites W2019144955 @default.
- W3010799433 cites W2019967662 @default.
- W3010799433 cites W2020492876 @default.
- W3010799433 cites W2026469745 @default.
- W3010799433 cites W2028844900 @default.
- W3010799433 cites W2029118156 @default.
- W3010799433 cites W2029647802 @default.
- W3010799433 cites W2036056542 @default.
- W3010799433 cites W2038840988 @default.
- W3010799433 cites W2039768055 @default.
- W3010799433 cites W2041205904 @default.
- W3010799433 cites W2042908594 @default.
- W3010799433 cites W2045155545 @default.
- W3010799433 cites W2046404820 @default.
- W3010799433 cites W2051098045 @default.
- W3010799433 cites W2051438985 @default.
- W3010799433 cites W2053418852 @default.
- W3010799433 cites W2054172243 @default.
- W3010799433 cites W2055072530 @default.
- W3010799433 cites W2059863962 @default.
- W3010799433 cites W2062480619 @default.
- W3010799433 cites W2062567499 @default.
- W3010799433 cites W2063907334 @default.
- W3010799433 cites W2065545939 @default.
- W3010799433 cites W2071495852 @default.
- W3010799433 cites W2071885758 @default.
- W3010799433 cites W2073503722 @default.
- W3010799433 cites W2073870144 @default.
- W3010799433 cites W2074607920 @default.
- W3010799433 cites W2077439648 @default.
- W3010799433 cites W2079454091 @default.
- W3010799433 cites W2080123217 @default.
- W3010799433 cites W2081728108 @default.
- W3010799433 cites W2082627840 @default.
- W3010799433 cites W2084924932 @default.
- W3010799433 cites W2086314176 @default.
- W3010799433 cites W2086970160 @default.
- W3010799433 cites W2093280389 @default.
- W3010799433 cites W2093303536 @default.
- W3010799433 cites W2097018019 @default.
- W3010799433 cites W2103184761 @default.
- W3010799433 cites W2103626949 @default.
- W3010799433 cites W2107145221 @default.
- W3010799433 cites W2111947859 @default.
- W3010799433 cites W2114044963 @default.
- W3010799433 cites W2116730904 @default.
- W3010799433 cites W2117333625 @default.
- W3010799433 cites W2118703810 @default.
- W3010799433 cites W2119198082 @default.
- W3010799433 cites W2121025745 @default.
- W3010799433 cites W2133353144 @default.
- W3010799433 cites W2144559754 @default.
- W3010799433 cites W2146786221 @default.
- W3010799433 cites W2149746105 @default.
- W3010799433 cites W2152164823 @default.
- W3010799433 cites W2153783191 @default.
- W3010799433 cites W2157760685 @default.