Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010807909> ?p ?o ?g. }
- W3010807909 endingPage "205" @default.
- W3010807909 startingPage "187" @default.
- W3010807909 abstract "Valparaíso, a central-southern region in Chile, has one of the highest rates of wildfire occurrence in the country. The constant threat of fires is mainly due to its highly flammable forest plantation, composed of 97.5% Pinus radiata and Eucalyptus globulus. Fuel moisture content is one of the most relevant parameters for studying fire spreading and risk, and can be estimated from the reflectance of leaves in the short wave infra-red (SWIR) range, not easily available in most vision-based sensors. Therefore, this work addresses the problem of estimating the water content of leaves from the two previously mentioned species, without any knowledge of their spectrum in the SWIR band. To this end, and for validation purposes, the reflectance of 90 leaves per species, at five dehydration stages, were taken between 350 nm and 2500 nm (full spectrum). Then, two machine-learning regressors were trained with 70% of the data set to determine the unknown reflectance, in the range 1000 nm–2500 nm. Results were validated with the remaining 30% of the data, achieving a root mean square error less than 9% in the spectrum estimation, and an error of 10% in spectral indices related to water content estimation." @default.
- W3010807909 created "2020-03-23" @default.
- W3010807909 creator A5006335832 @default.
- W3010807909 creator A5029348195 @default.
- W3010807909 creator A5030145461 @default.
- W3010807909 creator A5031307854 @default.
- W3010807909 creator A5061931953 @default.
- W3010807909 date "2020-05-01" @default.
- W3010807909 modified "2023-10-13" @default.
- W3010807909 title "Moisture content estimation of Pinus radiata and Eucalyptus globulus from reconstructed leaf reflectance in the SWIR region" @default.
- W3010807909 cites W1821991996 @default.
- W3010807909 cites W1871264645 @default.
- W3010807909 cites W1974110440 @default.
- W3010807909 cites W1978617972 @default.
- W3010807909 cites W1982442435 @default.
- W3010807909 cites W1986786848 @default.
- W3010807909 cites W1988134733 @default.
- W3010807909 cites W1989348351 @default.
- W3010807909 cites W1994378716 @default.
- W3010807909 cites W2000972253 @default.
- W3010807909 cites W2005479457 @default.
- W3010807909 cites W2018732570 @default.
- W3010807909 cites W2026740818 @default.
- W3010807909 cites W2030387344 @default.
- W3010807909 cites W2037929503 @default.
- W3010807909 cites W2045549004 @default.
- W3010807909 cites W2046295882 @default.
- W3010807909 cites W2049398443 @default.
- W3010807909 cites W2054037016 @default.
- W3010807909 cites W2056496234 @default.
- W3010807909 cites W2064632414 @default.
- W3010807909 cites W2078987934 @default.
- W3010807909 cites W2082627840 @default.
- W3010807909 cites W2089468765 @default.
- W3010807909 cites W2095162528 @default.
- W3010807909 cites W2130869751 @default.
- W3010807909 cites W2148883373 @default.
- W3010807909 cites W2158755893 @default.
- W3010807909 cites W2188115011 @default.
- W3010807909 cites W2339415905 @default.
- W3010807909 cites W2359174629 @default.
- W3010807909 cites W2508216873 @default.
- W3010807909 cites W2766146177 @default.
- W3010807909 cites W2769119863 @default.
- W3010807909 cites W2794828875 @default.
- W3010807909 cites W2800078340 @default.
- W3010807909 cites W2803128233 @default.
- W3010807909 cites W2804621941 @default.
- W3010807909 cites W2810947348 @default.
- W3010807909 cites W2892350612 @default.
- W3010807909 cites W2906150950 @default.
- W3010807909 cites W2910829991 @default.
- W3010807909 cites W2912953700 @default.
- W3010807909 cites W2936338007 @default.
- W3010807909 cites W2946937404 @default.
- W3010807909 cites W2994909843 @default.
- W3010807909 cites W633320881 @default.
- W3010807909 doi "https://doi.org/10.1016/j.biosystemseng.2020.03.004" @default.
- W3010807909 hasPublicationYear "2020" @default.
- W3010807909 type Work @default.
- W3010807909 sameAs 3010807909 @default.
- W3010807909 citedByCount "10" @default.
- W3010807909 countsByYear W30108079092020 @default.
- W3010807909 countsByYear W30108079092021 @default.
- W3010807909 countsByYear W30108079092022 @default.
- W3010807909 crossrefType "journal-article" @default.
- W3010807909 hasAuthorship W3010807909A5006335832 @default.
- W3010807909 hasAuthorship W3010807909A5029348195 @default.
- W3010807909 hasAuthorship W3010807909A5030145461 @default.
- W3010807909 hasAuthorship W3010807909A5031307854 @default.
- W3010807909 hasAuthorship W3010807909A5061931953 @default.
- W3010807909 hasConcept C105795698 @default.
- W3010807909 hasConcept C108597893 @default.
- W3010807909 hasConcept C120665830 @default.
- W3010807909 hasConcept C121332964 @default.
- W3010807909 hasConcept C127313418 @default.
- W3010807909 hasConcept C139945424 @default.
- W3010807909 hasConcept C142724271 @default.
- W3010807909 hasConcept C144027150 @default.
- W3010807909 hasConcept C159985019 @default.
- W3010807909 hasConcept C187320778 @default.
- W3010807909 hasConcept C192562407 @default.
- W3010807909 hasConcept C204323151 @default.
- W3010807909 hasConcept C205649164 @default.
- W3010807909 hasConcept C24939127 @default.
- W3010807909 hasConcept C2776133958 @default.
- W3010807909 hasConcept C2776491502 @default.
- W3010807909 hasConcept C2776801807 @default.
- W3010807909 hasConcept C2778357721 @default.
- W3010807909 hasConcept C2779752776 @default.
- W3010807909 hasConcept C2779862049 @default.
- W3010807909 hasConcept C2910048773 @default.
- W3010807909 hasConcept C33923547 @default.
- W3010807909 hasConcept C39432304 @default.
- W3010807909 hasConcept C59822182 @default.
- W3010807909 hasConcept C62649853 @default.
- W3010807909 hasConcept C71924100 @default.
- W3010807909 hasConcept C86803240 @default.