Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010873879> ?p ?o ?g. }
- W3010873879 endingPage "827" @default.
- W3010873879 startingPage "813" @default.
- W3010873879 abstract "Identification of crops is an important topic in the agricultural domain. Hyperspectral remote sensing data are very useful for crop feature extraction and classification. Remote sensing data is an unstructured data and Convolutional Neural Network (CNN) can work on unstructured data efficiently. This paper presents an evaluation of CNN for crop classification using the Indian Pines standard dataset obtained from the AVIRIS sensor and the study area dataset obtained from the EO-1hyperion sensor. Optimized CNN has been tuned by training the model on different parameters. It has been compared with two classification algorithms: Deep Neural Network (DNN) and Convolutional Autoencoder. According to the test results, the proposed optimized CNN model provided better results as compared to the other two methods. CNN has given 97 ± 0.58% overall accuracy for the Indian Pines standard dataset and 78 ± 2.43% for our study area dataset." @default.
- W3010873879 created "2020-03-23" @default.
- W3010873879 creator A5017811430 @default.
- W3010873879 creator A5053538184 @default.
- W3010873879 date "2020-03-18" @default.
- W3010873879 modified "2023-10-05" @default.
- W3010873879 title "Evaluation of CNN model by comparing with convolutional autoencoder and deep neural network for crop classification on hyperspectral imagery" @default.
- W3010873879 cites W1843514792 @default.
- W3010873879 cites W1859998252 @default.
- W3010873879 cites W1985533614 @default.
- W3010873879 cites W1990653740 @default.
- W3010873879 cites W1996745738 @default.
- W3010873879 cites W2004201407 @default.
- W3010873879 cites W2018838291 @default.
- W3010873879 cites W2020141522 @default.
- W3010873879 cites W2029316659 @default.
- W3010873879 cites W2046729784 @default.
- W3010873879 cites W2051440202 @default.
- W3010873879 cites W2068470708 @default.
- W3010873879 cites W2070503984 @default.
- W3010873879 cites W2075298165 @default.
- W3010873879 cites W2079454091 @default.
- W3010873879 cites W2132918507 @default.
- W3010873879 cites W2154240401 @default.
- W3010873879 cites W2167799103 @default.
- W3010873879 cites W2314785379 @default.
- W3010873879 cites W2331071973 @default.
- W3010873879 cites W2331413142 @default.
- W3010873879 cites W2344884875 @default.
- W3010873879 cites W2469929894 @default.
- W3010873879 cites W2478498158 @default.
- W3010873879 cites W2500751094 @default.
- W3010873879 cites W2522693813 @default.
- W3010873879 cites W2563159472 @default.
- W3010873879 cites W2572303978 @default.
- W3010873879 cites W2599126223 @default.
- W3010873879 cites W2604086375 @default.
- W3010873879 cites W2744274881 @default.
- W3010873879 cites W2768914963 @default.
- W3010873879 cites W2770084018 @default.
- W3010873879 cites W2796869941 @default.
- W3010873879 cites W2800085955 @default.
- W3010873879 cites W2914033848 @default.
- W3010873879 cites W2921182906 @default.
- W3010873879 cites W2972321769 @default.
- W3010873879 cites W2793786579 @default.
- W3010873879 doi "https://doi.org/10.1080/10106049.2020.1740950" @default.
- W3010873879 hasPublicationYear "2020" @default.
- W3010873879 type Work @default.
- W3010873879 sameAs 3010873879 @default.
- W3010873879 citedByCount "14" @default.
- W3010873879 countsByYear W30108738792020 @default.
- W3010873879 countsByYear W30108738792021 @default.
- W3010873879 countsByYear W30108738792022 @default.
- W3010873879 countsByYear W30108738792023 @default.
- W3010873879 crossrefType "journal-article" @default.
- W3010873879 hasAuthorship W3010873879A5017811430 @default.
- W3010873879 hasAuthorship W3010873879A5053538184 @default.
- W3010873879 hasConcept C101738243 @default.
- W3010873879 hasConcept C108583219 @default.
- W3010873879 hasConcept C115961682 @default.
- W3010873879 hasConcept C153180895 @default.
- W3010873879 hasConcept C154945302 @default.
- W3010873879 hasConcept C159078339 @default.
- W3010873879 hasConcept C205649164 @default.
- W3010873879 hasConcept C41008148 @default.
- W3010873879 hasConcept C50644808 @default.
- W3010873879 hasConcept C52622490 @default.
- W3010873879 hasConcept C62649853 @default.
- W3010873879 hasConcept C75294576 @default.
- W3010873879 hasConcept C81363708 @default.
- W3010873879 hasConceptScore W3010873879C101738243 @default.
- W3010873879 hasConceptScore W3010873879C108583219 @default.
- W3010873879 hasConceptScore W3010873879C115961682 @default.
- W3010873879 hasConceptScore W3010873879C153180895 @default.
- W3010873879 hasConceptScore W3010873879C154945302 @default.
- W3010873879 hasConceptScore W3010873879C159078339 @default.
- W3010873879 hasConceptScore W3010873879C205649164 @default.
- W3010873879 hasConceptScore W3010873879C41008148 @default.
- W3010873879 hasConceptScore W3010873879C50644808 @default.
- W3010873879 hasConceptScore W3010873879C52622490 @default.
- W3010873879 hasConceptScore W3010873879C62649853 @default.
- W3010873879 hasConceptScore W3010873879C75294576 @default.
- W3010873879 hasConceptScore W3010873879C81363708 @default.
- W3010873879 hasIssue "3" @default.
- W3010873879 hasLocation W30108738791 @default.
- W3010873879 hasOpenAccess W3010873879 @default.
- W3010873879 hasPrimaryLocation W30108738791 @default.
- W3010873879 hasRelatedWork W2279398222 @default.
- W3010873879 hasRelatedWork W2592385986 @default.
- W3010873879 hasRelatedWork W2766604260 @default.
- W3010873879 hasRelatedWork W2772780115 @default.
- W3010873879 hasRelatedWork W2986507176 @default.
- W3010873879 hasRelatedWork W3105255022 @default.
- W3010873879 hasRelatedWork W3156786002 @default.
- W3010873879 hasRelatedWork W3173596272 @default.
- W3010873879 hasRelatedWork W4281924768 @default.
- W3010873879 hasRelatedWork W4299822940 @default.