Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010894009> ?p ?o ?g. }
- W3010894009 abstract "Abstract Utilizing historical clinical datasets to guide future treatment choices is beneficial for patients and physicians. Machine learning and feature selection algorithms (namely, Fisher’s discriminant ratio, Kruskal-Wallis’ analysis, and Relief-F) have been combined in this research to analyse a SEER database containing clinical features from de-identified thyroid cancer patients. The data covered 34 unique clinical variables such as patients’ age at diagnosis or information regarding lymph nodes, which were employed to build various novel classifiers to distinguish patients that lived for over 10 years since diagnosis, from those who did not survive at least five years. By properly optimizing supervised neural networks, specifically multilayer perceptrons, using data from large groups of thyroid cancer patients (between 6,756 and 20,344 for different models), we demonstrate that unspecialized and existing medical recording can be reliably turned into power of prediction to help doctors make informed and optimized treatment decisions, as distinguishing patients in terms of prognosis has been achieved with 94.5% accuracy. We also envisage the potential of applying our machine learning strategy to other diseases and purposes such as in designing clinical trials for unmasking the maximum benefits and minimizing risks associated with new drug candidates on given populations." @default.
- W3010894009 created "2020-03-23" @default.
- W3010894009 creator A5016826928 @default.
- W3010894009 creator A5027683903 @default.
- W3010894009 creator A5031435818 @default.
- W3010894009 creator A5047915882 @default.
- W3010894009 creator A5057054620 @default.
- W3010894009 creator A5068756151 @default.
- W3010894009 creator A5078353755 @default.
- W3010894009 creator A5079180918 @default.
- W3010894009 creator A5086353632 @default.
- W3010894009 date "2020-03-20" @default.
- W3010894009 modified "2023-10-03" @default.
- W3010894009 title "Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis" @default.
- W3010894009 cites W1482850831 @default.
- W3010894009 cites W1547925117 @default.
- W3010894009 cites W1831768120 @default.
- W3010894009 cites W1968812902 @default.
- W3010894009 cites W1970594742 @default.
- W3010894009 cites W1985213644 @default.
- W3010894009 cites W1988479873 @default.
- W3010894009 cites W1989548779 @default.
- W3010894009 cites W1994357042 @default.
- W3010894009 cites W2013262041 @default.
- W3010894009 cites W2017877881 @default.
- W3010894009 cites W2021462286 @default.
- W3010894009 cites W2027147487 @default.
- W3010894009 cites W2041282815 @default.
- W3010894009 cites W2054880323 @default.
- W3010894009 cites W2081902962 @default.
- W3010894009 cites W2087457590 @default.
- W3010894009 cites W2098206569 @default.
- W3010894009 cites W2135468945 @default.
- W3010894009 cites W2137356002 @default.
- W3010894009 cites W2145150141 @default.
- W3010894009 cites W2158698691 @default.
- W3010894009 cites W2167101736 @default.
- W3010894009 cites W2186382263 @default.
- W3010894009 cites W2323969373 @default.
- W3010894009 cites W2343940226 @default.
- W3010894009 cites W2557738935 @default.
- W3010894009 cites W2573152477 @default.
- W3010894009 cites W2581082771 @default.
- W3010894009 cites W2620760558 @default.
- W3010894009 cites W2683864618 @default.
- W3010894009 cites W2777380340 @default.
- W3010894009 cites W2783922142 @default.
- W3010894009 cites W2789818572 @default.
- W3010894009 cites W2868193188 @default.
- W3010894009 cites W2911188335 @default.
- W3010894009 cites W2941063375 @default.
- W3010894009 cites W2945906493 @default.
- W3010894009 cites W2952047753 @default.
- W3010894009 doi "https://doi.org/10.1038/s41598-020-62023-w" @default.
- W3010894009 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7083829" @default.
- W3010894009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32198433" @default.
- W3010894009 hasPublicationYear "2020" @default.
- W3010894009 type Work @default.
- W3010894009 sameAs 3010894009 @default.
- W3010894009 citedByCount "20" @default.
- W3010894009 countsByYear W30108940092020 @default.
- W3010894009 countsByYear W30108940092021 @default.
- W3010894009 countsByYear W30108940092022 @default.
- W3010894009 countsByYear W30108940092023 @default.
- W3010894009 crossrefType "journal-article" @default.
- W3010894009 hasAuthorship W3010894009A5016826928 @default.
- W3010894009 hasAuthorship W3010894009A5027683903 @default.
- W3010894009 hasAuthorship W3010894009A5031435818 @default.
- W3010894009 hasAuthorship W3010894009A5047915882 @default.
- W3010894009 hasAuthorship W3010894009A5057054620 @default.
- W3010894009 hasAuthorship W3010894009A5068756151 @default.
- W3010894009 hasAuthorship W3010894009A5078353755 @default.
- W3010894009 hasAuthorship W3010894009A5079180918 @default.
- W3010894009 hasAuthorship W3010894009A5086353632 @default.
- W3010894009 hasBestOaLocation W30108940091 @default.
- W3010894009 hasConcept C119857082 @default.
- W3010894009 hasConcept C121608353 @default.
- W3010894009 hasConcept C126322002 @default.
- W3010894009 hasConcept C138885662 @default.
- W3010894009 hasConcept C142724271 @default.
- W3010894009 hasConcept C148483581 @default.
- W3010894009 hasConcept C154945302 @default.
- W3010894009 hasConcept C2776401178 @default.
- W3010894009 hasConcept C2779761222 @default.
- W3010894009 hasConcept C41008148 @default.
- W3010894009 hasConcept C41895202 @default.
- W3010894009 hasConcept C50644808 @default.
- W3010894009 hasConcept C534262118 @default.
- W3010894009 hasConcept C535046627 @default.
- W3010894009 hasConcept C60908668 @default.
- W3010894009 hasConcept C69738355 @default.
- W3010894009 hasConcept C71924100 @default.
- W3010894009 hasConceptScore W3010894009C119857082 @default.
- W3010894009 hasConceptScore W3010894009C121608353 @default.
- W3010894009 hasConceptScore W3010894009C126322002 @default.
- W3010894009 hasConceptScore W3010894009C138885662 @default.
- W3010894009 hasConceptScore W3010894009C142724271 @default.
- W3010894009 hasConceptScore W3010894009C148483581 @default.
- W3010894009 hasConceptScore W3010894009C154945302 @default.
- W3010894009 hasConceptScore W3010894009C2776401178 @default.