Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010910223> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3010910223 abstract "Quantitative 3D analysis of brain vasculature is a fundamental problem with important applications, for which vessel segmentation is a first step. Traditional segmentation methods based on parametric models have limited accuracy. More recent techniques based on machine learning have promising results but limited generalization capability. We present a deep-learning based segmentation method that overcomes limitations of existing systems and demonstrates the ability to generalize to various imaging setups, samples including both in-vivo/ex-vivo data, with state-of-the-art results. We achieve so by exploiting several novel methods in deep learning, such as semi-supervised learning. We believe that our work will be another step forward towards improved large-scale neurovascular analysis." @default.
- W3010910223 created "2020-03-23" @default.
- W3010910223 creator A5001449972 @default.
- W3010910223 creator A5013887346 @default.
- W3010910223 creator A5019766816 @default.
- W3010910223 creator A5023037097 @default.
- W3010910223 creator A5035399148 @default.
- W3010910223 creator A5075040052 @default.
- W3010910223 creator A5077482227 @default.
- W3010910223 creator A5079507190 @default.
- W3010910223 creator A5091823994 @default.
- W3010910223 date "2020-03-09" @default.
- W3010910223 modified "2023-09-26" @default.
- W3010910223 title "A generalizable deep-learning approach to anatomical modeling of brain vasculature (Conference Presentation)" @default.
- W3010910223 doi "https://doi.org/10.1117/12.2543864" @default.
- W3010910223 hasPublicationYear "2020" @default.
- W3010910223 type Work @default.
- W3010910223 sameAs 3010910223 @default.
- W3010910223 citedByCount "0" @default.
- W3010910223 crossrefType "proceedings-article" @default.
- W3010910223 hasAuthorship W3010910223A5001449972 @default.
- W3010910223 hasAuthorship W3010910223A5013887346 @default.
- W3010910223 hasAuthorship W3010910223A5019766816 @default.
- W3010910223 hasAuthorship W3010910223A5023037097 @default.
- W3010910223 hasAuthorship W3010910223A5035399148 @default.
- W3010910223 hasAuthorship W3010910223A5075040052 @default.
- W3010910223 hasAuthorship W3010910223A5077482227 @default.
- W3010910223 hasAuthorship W3010910223A5079507190 @default.
- W3010910223 hasAuthorship W3010910223A5091823994 @default.
- W3010910223 hasConcept C105795698 @default.
- W3010910223 hasConcept C108583219 @default.
- W3010910223 hasConcept C117251300 @default.
- W3010910223 hasConcept C119857082 @default.
- W3010910223 hasConcept C134306372 @default.
- W3010910223 hasConcept C154945302 @default.
- W3010910223 hasConcept C177148314 @default.
- W3010910223 hasConcept C33923547 @default.
- W3010910223 hasConcept C41008148 @default.
- W3010910223 hasConcept C89600930 @default.
- W3010910223 hasConceptScore W3010910223C105795698 @default.
- W3010910223 hasConceptScore W3010910223C108583219 @default.
- W3010910223 hasConceptScore W3010910223C117251300 @default.
- W3010910223 hasConceptScore W3010910223C119857082 @default.
- W3010910223 hasConceptScore W3010910223C134306372 @default.
- W3010910223 hasConceptScore W3010910223C154945302 @default.
- W3010910223 hasConceptScore W3010910223C177148314 @default.
- W3010910223 hasConceptScore W3010910223C33923547 @default.
- W3010910223 hasConceptScore W3010910223C41008148 @default.
- W3010910223 hasConceptScore W3010910223C89600930 @default.
- W3010910223 hasLocation W30109102231 @default.
- W3010910223 hasOpenAccess W3010910223 @default.
- W3010910223 hasPrimaryLocation W30109102231 @default.
- W3010910223 hasRelatedWork W10944326 @default.
- W3010910223 hasRelatedWork W11122729 @default.
- W3010910223 hasRelatedWork W12824513 @default.
- W3010910223 hasRelatedWork W13426584 @default.
- W3010910223 hasRelatedWork W14789944 @default.
- W3010910223 hasRelatedWork W4412456 @default.
- W3010910223 hasRelatedWork W547392 @default.
- W3010910223 hasRelatedWork W592020 @default.
- W3010910223 hasRelatedWork W6229082 @default.
- W3010910223 hasRelatedWork W9952751 @default.
- W3010910223 isParatext "false" @default.
- W3010910223 isRetracted "false" @default.
- W3010910223 magId "3010910223" @default.
- W3010910223 workType "article" @default.