Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010922342> ?p ?o ?g. }
- W3010922342 abstract "Abstract Complex neuropsychiatric diseases such as schizophrenia require drugs that can target multiple G protein-coupled receptors (GPCRs) to modulate complex neuropsychiatric functions. Here, we report an automated system comprising a deep recurrent neural network (RNN) and a multitask deep neural network (MTDNN) to design and optimize multitargeted antipsychotic drugs. The system successfully generates novel molecule structures with desired multiple target activities, among which high-ranking compound 3 was synthesized, and demonstrated potent activities against dopamine D 2 , serotonin 5-HT 1A and 5-HT 2A receptors. Hit expansion based on the MTDNN was performed, 6 analogs of compound 3 were evaluated experimentally, among which compound 8 not only exhibited specific polypharmacology profiles but also showed antipsychotic effect in animal models with low potential for sedation and catalepsy, highlighting their suitability for further preclinical studies. The approach can be an efficient tool for designing lead compounds with multitarget profiles to achieve the desired efficacy in the treatment of complex neuropsychiatric diseases. Graphical abstract" @default.
- W3010922342 created "2020-03-23" @default.
- W3010922342 creator A5001392142 @default.
- W3010922342 creator A5002551693 @default.
- W3010922342 creator A5005254169 @default.
- W3010922342 creator A5008792226 @default.
- W3010922342 creator A5013313442 @default.
- W3010922342 creator A5034607534 @default.
- W3010922342 creator A5046574920 @default.
- W3010922342 creator A5047036161 @default.
- W3010922342 creator A5050845568 @default.
- W3010922342 creator A5066165236 @default.
- W3010922342 creator A5070995929 @default.
- W3010922342 creator A5073414026 @default.
- W3010922342 creator A5075749706 @default.
- W3010922342 creator A5081415126 @default.
- W3010922342 creator A5083149989 @default.
- W3010922342 creator A5088201777 @default.
- W3010922342 creator A5089956242 @default.
- W3010922342 date "2020-03-20" @default.
- W3010922342 modified "2023-10-17" @default.
- W3010922342 title "Automated design and optimization of multitarget schizophrenia drug candidates by deep learning" @default.
- W3010922342 cites W1174108660 @default.
- W3010922342 cites W119245859 @default.
- W3010922342 cites W1561450486 @default.
- W3010922342 cites W1966874741 @default.
- W3010922342 cites W1973861157 @default.
- W3010922342 cites W1987612487 @default.
- W3010922342 cites W1988037271 @default.
- W3010922342 cites W1989377432 @default.
- W3010922342 cites W1995638515 @default.
- W3010922342 cites W1999798000 @default.
- W3010922342 cites W2003194288 @default.
- W3010922342 cites W2014026290 @default.
- W3010922342 cites W2023818227 @default.
- W3010922342 cites W2029305656 @default.
- W3010922342 cites W2030028063 @default.
- W3010922342 cites W2033181602 @default.
- W3010922342 cites W2033495141 @default.
- W3010922342 cites W2041734964 @default.
- W3010922342 cites W2042391155 @default.
- W3010922342 cites W2043509228 @default.
- W3010922342 cites W2044834685 @default.
- W3010922342 cites W2048250261 @default.
- W3010922342 cites W2054695075 @default.
- W3010922342 cites W2060300932 @default.
- W3010922342 cites W2064675550 @default.
- W3010922342 cites W2070357412 @default.
- W3010922342 cites W2070422098 @default.
- W3010922342 cites W2113863960 @default.
- W3010922342 cites W2121361221 @default.
- W3010922342 cites W2122995608 @default.
- W3010922342 cites W2142828574 @default.
- W3010922342 cites W2151839057 @default.
- W3010922342 cites W2156667276 @default.
- W3010922342 cites W2158137297 @default.
- W3010922342 cites W2160592148 @default.
- W3010922342 cites W2162105640 @default.
- W3010922342 cites W2167223183 @default.
- W3010922342 cites W2317839731 @default.
- W3010922342 cites W2539516381 @default.
- W3010922342 cites W2578240541 @default.
- W3010922342 cites W2610148085 @default.
- W3010922342 cites W2751756351 @default.
- W3010922342 cites W2784270883 @default.
- W3010922342 cites W2897337442 @default.
- W3010922342 cites W2939314313 @default.
- W3010922342 cites W2963028280 @default.
- W3010922342 cites W2971690404 @default.
- W3010922342 cites W3098269892 @default.
- W3010922342 cites W3100751385 @default.
- W3010922342 cites W47623468 @default.
- W3010922342 doi "https://doi.org/10.1101/2020.03.19.999615" @default.
- W3010922342 hasPublicationYear "2020" @default.
- W3010922342 type Work @default.
- W3010922342 sameAs 3010922342 @default.
- W3010922342 citedByCount "0" @default.
- W3010922342 crossrefType "posted-content" @default.
- W3010922342 hasAuthorship W3010922342A5001392142 @default.
- W3010922342 hasAuthorship W3010922342A5002551693 @default.
- W3010922342 hasAuthorship W3010922342A5005254169 @default.
- W3010922342 hasAuthorship W3010922342A5008792226 @default.
- W3010922342 hasAuthorship W3010922342A5013313442 @default.
- W3010922342 hasAuthorship W3010922342A5034607534 @default.
- W3010922342 hasAuthorship W3010922342A5046574920 @default.
- W3010922342 hasAuthorship W3010922342A5047036161 @default.
- W3010922342 hasAuthorship W3010922342A5050845568 @default.
- W3010922342 hasAuthorship W3010922342A5066165236 @default.
- W3010922342 hasAuthorship W3010922342A5070995929 @default.
- W3010922342 hasAuthorship W3010922342A5073414026 @default.
- W3010922342 hasAuthorship W3010922342A5075749706 @default.
- W3010922342 hasAuthorship W3010922342A5081415126 @default.
- W3010922342 hasAuthorship W3010922342A5083149989 @default.
- W3010922342 hasAuthorship W3010922342A5088201777 @default.
- W3010922342 hasAuthorship W3010922342A5089956242 @default.
- W3010922342 hasBestOaLocation W30109223421 @default.
- W3010922342 hasConcept C119857082 @default.
- W3010922342 hasConcept C154945302 @default.
- W3010922342 hasConcept C15744967 @default.
- W3010922342 hasConcept C169760540 @default.