Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010933766> ?p ?o ?g. }
- W3010933766 endingPage "368" @default.
- W3010933766 startingPage "368" @default.
- W3010933766 abstract "Tea trees are kept in shaded locations to increase their chlorophyll content, which influences green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions is important for managing tea trees and producing high-quality green tea. Hyperspectral remote sensing is one of the most frequently used methods for estimating chlorophyll content. Numerous studies based on data collected under relatively low-stress conditions and many hyperspectral indices and radiative transfer models show that shade-grown tea performs poorly. The performance of four machine learning algorithms—random forest, support vector machine, deep belief nets, and kernel-based extreme learning machine (KELM)—in evaluating data collected from tea leaves cultivated under different shade treatments was tested. KELM performed best with a root-mean-square error of 8.94 ± 3.05 μg cm−2 and performance to deviation values from 1.70 to 8.04 for the test data. These results suggest that a combination of hyperspectral reflectance and KELM has the potential to trace changes in the chlorophyll content of shaded tea leaves." @default.
- W3010933766 created "2020-03-23" @default.
- W3010933766 creator A5004016354 @default.
- W3010933766 creator A5026260210 @default.
- W3010933766 creator A5041510839 @default.
- W3010933766 date "2020-03-17" @default.
- W3010933766 modified "2023-10-16" @default.
- W3010933766 title "Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms" @default.
- W3010933766 cites W1532517383 @default.
- W3010933766 cites W1840430935 @default.
- W3010933766 cites W1970198112 @default.
- W3010933766 cites W1974416151 @default.
- W3010933766 cites W1974842331 @default.
- W3010933766 cites W1980789580 @default.
- W3010933766 cites W1998053851 @default.
- W3010933766 cites W2008253200 @default.
- W3010933766 cites W2009542758 @default.
- W3010933766 cites W2018915932 @default.
- W3010933766 cites W2019349143 @default.
- W3010933766 cites W2025757188 @default.
- W3010933766 cites W2026131661 @default.
- W3010933766 cites W2029316659 @default.
- W3010933766 cites W2034710737 @default.
- W3010933766 cites W2039756591 @default.
- W3010933766 cites W2043013131 @default.
- W3010933766 cites W2051128904 @default.
- W3010933766 cites W2051455736 @default.
- W3010933766 cites W2066724429 @default.
- W3010933766 cites W2075021380 @default.
- W3010933766 cites W2079374692 @default.
- W3010933766 cites W2082917714 @default.
- W3010933766 cites W2097018019 @default.
- W3010933766 cites W2098238896 @default.
- W3010933766 cites W2102273661 @default.
- W3010933766 cites W2105770001 @default.
- W3010933766 cites W2107162052 @default.
- W3010933766 cites W2111072639 @default.
- W3010933766 cites W2121971770 @default.
- W3010933766 cites W2129483042 @default.
- W3010933766 cites W2136922672 @default.
- W3010933766 cites W2139212933 @default.
- W3010933766 cites W2142084805 @default.
- W3010933766 cites W2146754899 @default.
- W3010933766 cites W2157595416 @default.
- W3010933766 cites W2158585626 @default.
- W3010933766 cites W2158755893 @default.
- W3010933766 cites W2161765830 @default.
- W3010933766 cites W2163517193 @default.
- W3010933766 cites W2165878081 @default.
- W3010933766 cites W2172943126 @default.
- W3010933766 cites W2216946510 @default.
- W3010933766 cites W2248139498 @default.
- W3010933766 cites W2279673570 @default.
- W3010933766 cites W2414025706 @default.
- W3010933766 cites W2511683089 @default.
- W3010933766 cites W2536511668 @default.
- W3010933766 cites W2560493454 @default.
- W3010933766 cites W2560775042 @default.
- W3010933766 cites W2585334141 @default.
- W3010933766 cites W2586297576 @default.
- W3010933766 cites W2600798029 @default.
- W3010933766 cites W2606669148 @default.
- W3010933766 cites W2765879045 @default.
- W3010933766 cites W2770540439 @default.
- W3010933766 cites W2773108855 @default.
- W3010933766 cites W2801130496 @default.
- W3010933766 cites W2808171695 @default.
- W3010933766 cites W2820055517 @default.
- W3010933766 cites W2888934202 @default.
- W3010933766 cites W2891431209 @default.
- W3010933766 cites W2894743722 @default.
- W3010933766 cites W2911964244 @default.
- W3010933766 cites W2917051523 @default.
- W3010933766 cites W2943854178 @default.
- W3010933766 cites W2945838957 @default.
- W3010933766 cites W2963935416 @default.
- W3010933766 cites W2969695601 @default.
- W3010933766 cites W2972707871 @default.
- W3010933766 cites W2982381523 @default.
- W3010933766 cites W2987472362 @default.
- W3010933766 cites W2993386807 @default.
- W3010933766 cites W397135709 @default.
- W3010933766 cites W4376043615 @default.
- W3010933766 cites W3143111543 @default.
- W3010933766 doi "https://doi.org/10.3390/plants9030368" @default.
- W3010933766 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7154821" @default.
- W3010933766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32192044" @default.
- W3010933766 hasPublicationYear "2020" @default.
- W3010933766 type Work @default.
- W3010933766 sameAs 3010933766 @default.
- W3010933766 citedByCount "27" @default.
- W3010933766 countsByYear W30109337662020 @default.
- W3010933766 countsByYear W30109337662021 @default.
- W3010933766 countsByYear W30109337662022 @default.
- W3010933766 countsByYear W30109337662023 @default.
- W3010933766 crossrefType "journal-article" @default.
- W3010933766 hasAuthorship W3010933766A5004016354 @default.
- W3010933766 hasAuthorship W3010933766A5026260210 @default.