Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010966205> ?p ?o ?g. }
- W3010966205 abstract "For a quantum system in a time-dependent perturbation, we prove that the variance in the energy depends entirely on the nonadiabatic transition probability amplitudes bk(t). Landau and Lifshitz introduced the nonadiabatic coefficients for the excited states of a perturbed quantum system by integrating by parts in Dirac’s expressions for the coefficients ck(1)(t) of the excited states to first order in the perturbation. This separates ck(1)(t) for each state into an adiabatic term ak(1)(t) and a nonadiabatic term bk(1)(t). The adiabatic term follows the adiabatic theorem of Born and Fock; it reflects the adjustment of the initial state to the perturbation without transitions. If the response to a time-dependent perturbation is entirely adiabatic, the variance in the energy is zero. The nonadiabatic term bk(1)(t) represents actual excitations away from the initial state. As a key result of the current work, we derive the variance in the energy of the quantum system and all of the higher moments of the energy distribution using the values of |bk(t)|2 for each of the excited states along with the energy differences between the excited states and the ground state. We prove that the same variance (through second order) is obtained in terms of Dirac’s excited-state coefficients ck(t). We show that the results from a standard statistical analysis of the variance are consistent with the quantum results if the probability of excitation Pk is set equal to |bk(t)|2, but not if the probability of excitation is set equal to |ck(t)|2. We illustrate the differences between the variances calculated with the two different forms of Pk for vibration–rotation transitions of HCl in the gas phase." @default.
- W3010966205 created "2020-03-23" @default.
- W3010966205 creator A5053374300 @default.
- W3010966205 creator A5074482783 @default.
- W3010966205 date "2020-03-12" @default.
- W3010966205 modified "2023-09-27" @default.
- W3010966205 title "Variance of the energy of a quantum system in a time-dependent perturbation: Determination by nonadiabatic transition probabilities" @default.
- W3010966205 cites W1498377335 @default.
- W3010966205 cites W1510159182 @default.
- W3010966205 cites W1567072113 @default.
- W3010966205 cites W1964443055 @default.
- W3010966205 cites W1972883454 @default.
- W3010966205 cites W1974281895 @default.
- W3010966205 cites W1975264848 @default.
- W3010966205 cites W1978401259 @default.
- W3010966205 cites W1978936677 @default.
- W3010966205 cites W1979112715 @default.
- W3010966205 cites W1988801946 @default.
- W3010966205 cites W2001270915 @default.
- W3010966205 cites W2001457800 @default.
- W3010966205 cites W2002265279 @default.
- W3010966205 cites W2002757090 @default.
- W3010966205 cites W2003000586 @default.
- W3010966205 cites W2003196873 @default.
- W3010966205 cites W2005537321 @default.
- W3010966205 cites W2007274640 @default.
- W3010966205 cites W2009836947 @default.
- W3010966205 cites W2011463759 @default.
- W3010966205 cites W2011764801 @default.
- W3010966205 cites W2015684584 @default.
- W3010966205 cites W2016098486 @default.
- W3010966205 cites W2020548509 @default.
- W3010966205 cites W2022368043 @default.
- W3010966205 cites W2024487663 @default.
- W3010966205 cites W2031828766 @default.
- W3010966205 cites W2032497114 @default.
- W3010966205 cites W2033191751 @default.
- W3010966205 cites W2035591252 @default.
- W3010966205 cites W2036134158 @default.
- W3010966205 cites W2045778932 @default.
- W3010966205 cites W2048573105 @default.
- W3010966205 cites W2049319925 @default.
- W3010966205 cites W2052266272 @default.
- W3010966205 cites W2052891002 @default.
- W3010966205 cites W2053602288 @default.
- W3010966205 cites W2055827540 @default.
- W3010966205 cites W2057961200 @default.
- W3010966205 cites W2059104184 @default.
- W3010966205 cites W2059280007 @default.
- W3010966205 cites W2060201892 @default.
- W3010966205 cites W2061716734 @default.
- W3010966205 cites W2065027276 @default.
- W3010966205 cites W2070137814 @default.
- W3010966205 cites W2076222379 @default.
- W3010966205 cites W2078150942 @default.
- W3010966205 cites W2089284751 @default.
- W3010966205 cites W2089772806 @default.
- W3010966205 cites W2094329495 @default.
- W3010966205 cites W2095583442 @default.
- W3010966205 cites W2105221346 @default.
- W3010966205 cites W2105614108 @default.
- W3010966205 cites W2107054201 @default.
- W3010966205 cites W2112699581 @default.
- W3010966205 cites W2136603482 @default.
- W3010966205 cites W2155402015 @default.
- W3010966205 cites W2170037368 @default.
- W3010966205 cites W2173311903 @default.
- W3010966205 cites W2203542361 @default.
- W3010966205 cites W2234499082 @default.
- W3010966205 cites W2239528024 @default.
- W3010966205 cites W2295188415 @default.
- W3010966205 cites W2317778353 @default.
- W3010966205 cites W2319956215 @default.
- W3010966205 cites W2321783554 @default.
- W3010966205 cites W2334728172 @default.
- W3010966205 cites W2334929171 @default.
- W3010966205 cites W2345779184 @default.
- W3010966205 cites W2412136907 @default.
- W3010966205 cites W2512614778 @default.
- W3010966205 cites W2548008265 @default.
- W3010966205 cites W2555090959 @default.
- W3010966205 cites W2614884730 @default.
- W3010966205 cites W2786827898 @default.
- W3010966205 cites W2804782586 @default.
- W3010966205 cites W2804796062 @default.
- W3010966205 cites W2804933479 @default.
- W3010966205 cites W2806751077 @default.
- W3010966205 cites W2890222248 @default.
- W3010966205 cites W2902420940 @default.
- W3010966205 cites W2903556140 @default.
- W3010966205 cites W2914701796 @default.
- W3010966205 cites W2921495432 @default.
- W3010966205 cites W2922198831 @default.
- W3010966205 cites W2927222551 @default.
- W3010966205 cites W2937103177 @default.
- W3010966205 cites W2946543898 @default.
- W3010966205 cites W3102358542 @default.
- W3010966205 cites W4249574405 @default.
- W3010966205 cites W788427216 @default.
- W3010966205 doi "https://doi.org/10.1063/1.5140009" @default.