Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010971568> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3010971568 abstract "Corruption is a serious impediment to global goals of ensuring sustainable development and is now a threat specifically recognized in the UN Sustainable Development Goals under Target 16.5. Though corruption remains challenging to identify, measure, and combat, technology advances provide new opportunities to advance humanitarian goals, including the detection of corruption reported by the public. In this study, we address this challenge by developing a method using an unsupervised machine learning model to detect reports of corruption-related activity on the micro-blogging platform Twitter. In total, we collected over 6 million tweets containing keywords related to corruption between January and February 2019. We use the Biterm Topic Model to then isolate tweets from users who report corruption and found that most topics focus on police bribery and corruption in health-care. Though preliminary, these results shave the potential of identifying the scope and prevalence of corruption in society and also advance shared goals of combating corruption and advancing sustainable development in the 21st century. Index TermsCorruption, Machine Learning, Natural Language Processing, Topic modeling." @default.
- W3010971568 created "2020-03-23" @default.
- W3010971568 creator A5011830859 @default.
- W3010971568 creator A5022424087 @default.
- W3010971568 creator A5036381691 @default.
- W3010971568 creator A5042351734 @default.
- W3010971568 creator A5054205831 @default.
- W3010971568 date "2019-10-01" @default.
- W3010971568 modified "2023-10-18" @default.
- W3010971568 title "Leveraging Big Data to Identify Corruption as an SDG Goal 16 Humanitarian Technology" @default.
- W3010971568 cites W1714665356 @default.
- W3010971568 cites W1982672081 @default.
- W3010971568 cites W2040895929 @default.
- W3010971568 cites W2064675550 @default.
- W3010971568 cites W2344188751 @default.
- W3010971568 cites W2743153148 @default.
- W3010971568 cites W2795734224 @default.
- W3010971568 cites W2888977718 @default.
- W3010971568 cites W4239510810 @default.
- W3010971568 doi "https://doi.org/10.1109/ghtc46095.2019.9033129" @default.
- W3010971568 hasPublicationYear "2019" @default.
- W3010971568 type Work @default.
- W3010971568 sameAs 3010971568 @default.
- W3010971568 citedByCount "3" @default.
- W3010971568 countsByYear W30109715682022 @default.
- W3010971568 crossrefType "proceedings-article" @default.
- W3010971568 hasAuthorship W3010971568A5011830859 @default.
- W3010971568 hasAuthorship W3010971568A5022424087 @default.
- W3010971568 hasAuthorship W3010971568A5036381691 @default.
- W3010971568 hasAuthorship W3010971568A5042351734 @default.
- W3010971568 hasAuthorship W3010971568A5054205831 @default.
- W3010971568 hasConcept C124101348 @default.
- W3010971568 hasConcept C124952713 @default.
- W3010971568 hasConcept C142362112 @default.
- W3010971568 hasConcept C144133560 @default.
- W3010971568 hasConcept C17744445 @default.
- W3010971568 hasConcept C199360897 @default.
- W3010971568 hasConcept C199539241 @default.
- W3010971568 hasConcept C2522767166 @default.
- W3010971568 hasConcept C2778012447 @default.
- W3010971568 hasConcept C2780027415 @default.
- W3010971568 hasConcept C39549134 @default.
- W3010971568 hasConcept C41008148 @default.
- W3010971568 hasConcept C552854447 @default.
- W3010971568 hasConcept C75684735 @default.
- W3010971568 hasConceptScore W3010971568C124101348 @default.
- W3010971568 hasConceptScore W3010971568C124952713 @default.
- W3010971568 hasConceptScore W3010971568C142362112 @default.
- W3010971568 hasConceptScore W3010971568C144133560 @default.
- W3010971568 hasConceptScore W3010971568C17744445 @default.
- W3010971568 hasConceptScore W3010971568C199360897 @default.
- W3010971568 hasConceptScore W3010971568C199539241 @default.
- W3010971568 hasConceptScore W3010971568C2522767166 @default.
- W3010971568 hasConceptScore W3010971568C2778012447 @default.
- W3010971568 hasConceptScore W3010971568C2780027415 @default.
- W3010971568 hasConceptScore W3010971568C39549134 @default.
- W3010971568 hasConceptScore W3010971568C41008148 @default.
- W3010971568 hasConceptScore W3010971568C552854447 @default.
- W3010971568 hasConceptScore W3010971568C75684735 @default.
- W3010971568 hasLocation W30109715681 @default.
- W3010971568 hasOpenAccess W3010971568 @default.
- W3010971568 hasPrimaryLocation W30109715681 @default.
- W3010971568 hasRelatedWork W1996408511 @default.
- W3010971568 hasRelatedWork W2748952813 @default.
- W3010971568 hasRelatedWork W2808989540 @default.
- W3010971568 hasRelatedWork W2887487214 @default.
- W3010971568 hasRelatedWork W2899084033 @default.
- W3010971568 hasRelatedWork W2971654642 @default.
- W3010971568 hasRelatedWork W3032979662 @default.
- W3010971568 hasRelatedWork W3169598651 @default.
- W3010971568 hasRelatedWork W4247880953 @default.
- W3010971568 hasRelatedWork W4322629366 @default.
- W3010971568 isParatext "false" @default.
- W3010971568 isRetracted "false" @default.
- W3010971568 magId "3010971568" @default.
- W3010971568 workType "article" @default.