Matches in SemOpenAlex for { <https://semopenalex.org/work/W3010986668> ?p ?o ?g. }
- W3010986668 endingPage "124819" @default.
- W3010986668 startingPage "124819" @default.
- W3010986668 abstract "Due to global climate change and growing population, fresh water resources are becoming more vulnerable to pollution. Protecting fresh water resources, especially lakes and the associated environment, is one of the key challenges faced by policy makers and water managers. Lake water level is an important physical indicator of lakes, and its fluctuation may significantly impact lake ecosystems. Therefore, reliable forecasting of lake water level is vital for a proper assessment of the health of lake ecosystems and their management. In this study, two machine learning models, including feed forward neural network (FFNN) and Deep Learning (DL) technique, were used to predict monthly lake water level. The two models were employed for one month ahead forecasting of lake water level in 69 temperate lakes in Poland. The results show that both the FFNN and the DL models performed generally well for forecasting of lake water level of the 69 lakes, with only marginal differences. The results also indicate that the DL model did not show significant superiority over the traditional FFNN model; indeed, the FFNN model slightly outperformed the DL model for 33 of the 69 lakes. These results seem to suggest that traditional machine learning models may just be sufficient for forecasting of lake water level when they are properly trained. The outcomes of the present study have important implications for water level forecasting and water resources management of lakes, especially from the perspective of machine learning models and their complexities." @default.
- W3010986668 created "2020-03-23" @default.
- W3010986668 creator A5008084305 @default.
- W3010986668 creator A5022595755 @default.
- W3010986668 creator A5048422840 @default.
- W3010986668 creator A5062774286 @default.
- W3010986668 creator A5084343355 @default.
- W3010986668 date "2020-06-01" @default.
- W3010986668 modified "2023-10-06" @default.
- W3010986668 title "Forecasting of water level in multiple temperate lakes using machine learning models" @default.
- W3010986668 cites W1034159276 @default.
- W3010986668 cites W1964688226 @default.
- W3010986668 cites W1987102910 @default.
- W3010986668 cites W1993012626 @default.
- W3010986668 cites W1998893231 @default.
- W3010986668 cites W2003180829 @default.
- W3010986668 cites W2005059732 @default.
- W3010986668 cites W2007431958 @default.
- W3010986668 cites W2014181236 @default.
- W3010986668 cites W2017163445 @default.
- W3010986668 cites W2043463872 @default.
- W3010986668 cites W2052075521 @default.
- W3010986668 cites W2057679371 @default.
- W3010986668 cites W2064675550 @default.
- W3010986668 cites W2072697915 @default.
- W3010986668 cites W2076462394 @default.
- W3010986668 cites W2084526672 @default.
- W3010986668 cites W2107878631 @default.
- W3010986668 cites W2108613620 @default.
- W3010986668 cites W2128084896 @default.
- W3010986668 cites W2136093832 @default.
- W3010986668 cites W2151685967 @default.
- W3010986668 cites W2318145034 @default.
- W3010986668 cites W2366454444 @default.
- W3010986668 cites W2403227346 @default.
- W3010986668 cites W2413338433 @default.
- W3010986668 cites W2507968393 @default.
- W3010986668 cites W2510289107 @default.
- W3010986668 cites W2511864677 @default.
- W3010986668 cites W2579451261 @default.
- W3010986668 cites W2603482517 @default.
- W3010986668 cites W2769851728 @default.
- W3010986668 cites W2791896807 @default.
- W3010986668 cites W2802436364 @default.
- W3010986668 cites W2803868847 @default.
- W3010986668 cites W2807044567 @default.
- W3010986668 cites W2810125650 @default.
- W3010986668 cites W2811000247 @default.
- W3010986668 cites W2884959379 @default.
- W3010986668 cites W2894615779 @default.
- W3010986668 cites W2897601283 @default.
- W3010986668 cites W2898661956 @default.
- W3010986668 cites W2898791292 @default.
- W3010986668 cites W2900276876 @default.
- W3010986668 cites W2905485021 @default.
- W3010986668 cites W2905813120 @default.
- W3010986668 cites W2906201625 @default.
- W3010986668 cites W2913323966 @default.
- W3010986668 cites W2923738139 @default.
- W3010986668 cites W2942855061 @default.
- W3010986668 cites W2963484282 @default.
- W3010986668 cites W2964006806 @default.
- W3010986668 cites W2969357546 @default.
- W3010986668 cites W2972302268 @default.
- W3010986668 cites W3106370744 @default.
- W3010986668 cites W3125807057 @default.
- W3010986668 cites W841982912 @default.
- W3010986668 doi "https://doi.org/10.1016/j.jhydrol.2020.124819" @default.
- W3010986668 hasPublicationYear "2020" @default.
- W3010986668 type Work @default.
- W3010986668 sameAs 3010986668 @default.
- W3010986668 citedByCount "75" @default.
- W3010986668 countsByYear W30109866682020 @default.
- W3010986668 countsByYear W30109866682021 @default.
- W3010986668 countsByYear W30109866682022 @default.
- W3010986668 countsByYear W30109866682023 @default.
- W3010986668 crossrefType "journal-article" @default.
- W3010986668 hasAuthorship W3010986668A5008084305 @default.
- W3010986668 hasAuthorship W3010986668A5022595755 @default.
- W3010986668 hasAuthorship W3010986668A5048422840 @default.
- W3010986668 hasAuthorship W3010986668A5062774286 @default.
- W3010986668 hasAuthorship W3010986668A5084343355 @default.
- W3010986668 hasConcept C110872660 @default.
- W3010986668 hasConcept C119857082 @default.
- W3010986668 hasConcept C127413603 @default.
- W3010986668 hasConcept C1284942 @default.
- W3010986668 hasConcept C153823671 @default.
- W3010986668 hasConcept C187320778 @default.
- W3010986668 hasConcept C18903297 @default.
- W3010986668 hasConcept C205649164 @default.
- W3010986668 hasConcept C39432304 @default.
- W3010986668 hasConcept C41008148 @default.
- W3010986668 hasConcept C42088612 @default.
- W3010986668 hasConcept C50644808 @default.
- W3010986668 hasConcept C58640448 @default.
- W3010986668 hasConcept C76886044 @default.
- W3010986668 hasConcept C81461190 @default.
- W3010986668 hasConcept C86803240 @default.