Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011019921> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3011019921 endingPage "38" @default.
- W3011019921 startingPage "33" @default.
- W3011019921 abstract "These days, almost every device like mobile phones, laptops to large systems such as power grid and nuclear plants are subjected to cyberattacks. Among serious cyber threats, malware-borne threats evolve daily and have the capacity to disrupt both IT and OT systems. A typical antivirus software uses primitive approaches such as generation of signatures of known malware beforehand and then comparing newly downloaded executables against these signatures to detect malware. In recent years, the malware authors have been highly successful in evading signature-based detection techniques. However, machine-learning-based malware detection and classification have gained a lot of importance in recent time. Machine learning methods extract features from binaries using different types of analyses. Static analysis does not execute the binary, but parses the binary to extract features such as use of APIs, size of different sections, etc. The malware authors evade static-analysis-based feature extraction by code obfuscation, packing, and encryption. Therefore, dynamic analysis techniques extract features by letting the code execute in a sandbox and collecting information on runtime activities. The dynamic analysis techniques can be somehow evaded by detecting the sandbox environment and not executing any abnormal or malicious activities inside the sandbox. Therefore, there is an urgent need to find a new approach to overcome the shortcomings of static or dynamic analysis. In this chapter, we discuss an approach to analyze malware for Windows and Linux executables using image representation of the binaries." @default.
- W3011019921 created "2020-03-23" @default.
- W3011019921 creator A5010419809 @default.
- W3011019921 creator A5021517996 @default.
- W3011019921 creator A5033663758 @default.
- W3011019921 creator A5063600287 @default.
- W3011019921 date "2020-01-01" @default.
- W3011019921 modified "2023-09-24" @default.
- W3011019921 title "Malware Analysis Using Image Classification Techniques" @default.
- W3011019921 cites W2749247755 @default.
- W3011019921 cites W2774949038 @default.
- W3011019921 cites W2949468774 @default.
- W3011019921 doi "https://doi.org/10.1007/978-981-15-1675-7_4" @default.
- W3011019921 hasPublicationYear "2020" @default.
- W3011019921 type Work @default.
- W3011019921 sameAs 3011019921 @default.
- W3011019921 citedByCount "3" @default.
- W3011019921 countsByYear W30110199212022 @default.
- W3011019921 crossrefType "book-chapter" @default.
- W3011019921 hasAuthorship W3011019921A5010419809 @default.
- W3011019921 hasAuthorship W3011019921A5021517996 @default.
- W3011019921 hasAuthorship W3011019921A5033663758 @default.
- W3011019921 hasAuthorship W3011019921A5063600287 @default.
- W3011019921 hasConcept C111919701 @default.
- W3011019921 hasConcept C137287247 @default.
- W3011019921 hasConcept C138673069 @default.
- W3011019921 hasConcept C154945302 @default.
- W3011019921 hasConcept C160145156 @default.
- W3011019921 hasConcept C167981075 @default.
- W3011019921 hasConcept C177264268 @default.
- W3011019921 hasConcept C199360897 @default.
- W3011019921 hasConcept C2524010 @default.
- W3011019921 hasConcept C2776760102 @default.
- W3011019921 hasConcept C2777904410 @default.
- W3011019921 hasConcept C2779395397 @default.
- W3011019921 hasConcept C2779696439 @default.
- W3011019921 hasConcept C33923547 @default.
- W3011019921 hasConcept C38652104 @default.
- W3011019921 hasConcept C40305131 @default.
- W3011019921 hasConcept C41008148 @default.
- W3011019921 hasConcept C529173508 @default.
- W3011019921 hasConcept C541664917 @default.
- W3011019921 hasConcept C84525096 @default.
- W3011019921 hasConcept C97686452 @default.
- W3011019921 hasConceptScore W3011019921C111919701 @default.
- W3011019921 hasConceptScore W3011019921C137287247 @default.
- W3011019921 hasConceptScore W3011019921C138673069 @default.
- W3011019921 hasConceptScore W3011019921C154945302 @default.
- W3011019921 hasConceptScore W3011019921C160145156 @default.
- W3011019921 hasConceptScore W3011019921C167981075 @default.
- W3011019921 hasConceptScore W3011019921C177264268 @default.
- W3011019921 hasConceptScore W3011019921C199360897 @default.
- W3011019921 hasConceptScore W3011019921C2524010 @default.
- W3011019921 hasConceptScore W3011019921C2776760102 @default.
- W3011019921 hasConceptScore W3011019921C2777904410 @default.
- W3011019921 hasConceptScore W3011019921C2779395397 @default.
- W3011019921 hasConceptScore W3011019921C2779696439 @default.
- W3011019921 hasConceptScore W3011019921C33923547 @default.
- W3011019921 hasConceptScore W3011019921C38652104 @default.
- W3011019921 hasConceptScore W3011019921C40305131 @default.
- W3011019921 hasConceptScore W3011019921C41008148 @default.
- W3011019921 hasConceptScore W3011019921C529173508 @default.
- W3011019921 hasConceptScore W3011019921C541664917 @default.
- W3011019921 hasConceptScore W3011019921C84525096 @default.
- W3011019921 hasConceptScore W3011019921C97686452 @default.
- W3011019921 hasLocation W30110199211 @default.
- W3011019921 hasOpenAccess W3011019921 @default.
- W3011019921 hasPrimaryLocation W30110199211 @default.
- W3011019921 hasRelatedWork W1533292911 @default.
- W3011019921 hasRelatedWork W1973597339 @default.
- W3011019921 hasRelatedWork W2005185696 @default.
- W3011019921 hasRelatedWork W2130228941 @default.
- W3011019921 hasRelatedWork W2132132164 @default.
- W3011019921 hasRelatedWork W2161229648 @default.
- W3011019921 hasRelatedWork W2235753890 @default.
- W3011019921 hasRelatedWork W2366116130 @default.
- W3011019921 hasRelatedWork W1966218515 @default.
- W3011019921 hasRelatedWork W2551465695 @default.
- W3011019921 isParatext "false" @default.
- W3011019921 isRetracted "false" @default.
- W3011019921 magId "3011019921" @default.
- W3011019921 workType "book-chapter" @default.