Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011046678> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3011046678 endingPage "00541" @default.
- W3011046678 startingPage "19" @default.
- W3011046678 abstract "Understanding the effect of uncertainties of Core Disruptive Accident (CDA) scenarios on debris bed coolability on a core catcher is required for decision making on design options to mitigate a CDA consequence. For the understanding, a huge number of calculations are required but are extremely difficult to perform because a huge number of calculations require much calculation time to solve non-steady equations in the coolability calculation model. Thus, we applied Artificial Neural Network (ANN), which is one of models for machine learning, to debris bed coolability calculations. The application of ANN is expected to exponentially improve the calculation speed of debris bed coolability because ANN provides results from experimental rules learned through training without solving non-steady equations. The application is in three steps. Firstly, we created many data for training ANN and validating the trained ANN through coolability calculations parameterizing main dominant inputs (particle diameter of debris bed, porosity of debris bed, etc.) by using Latin hypercube sampling. Secondly, ANN was trained and validated with the created data. The accuracy rate of the results by the ANN to the validation data exceeded 99%. In addition, the calculation time using ANN was micro seconds order. Finally, through demonstration calculations, it was confirmed that we can easily understand the effect of uncertainties of CDA scenarios on debris bed coolability owing to results visualization based on a huge number of parametric calculations using ANN. Thus, the application of ANN to debris bed coolability calculations should contribute to the decision making on design options to mitigate a CDA consequence." @default.
- W3011046678 created "2020-03-23" @default.
- W3011046678 creator A5000539432 @default.
- W3011046678 creator A5034647533 @default.
- W3011046678 creator A5037568296 @default.
- W3011046678 creator A5065333876 @default.
- W3011046678 date "2020-01-01" @default.
- W3011046678 modified "2023-09-26" @default.
- W3011046678 title "Study on application of artificial neural network to debris bed coolability calculations for sodium-cooled fast reactors" @default.
- W3011046678 cites W1577226223 @default.
- W3011046678 cites W2312425122 @default.
- W3011046678 cites W3012456824 @default.
- W3011046678 doi "https://doi.org/10.1299/mej.19-00541" @default.
- W3011046678 hasPublicationYear "2020" @default.
- W3011046678 type Work @default.
- W3011046678 sameAs 3011046678 @default.
- W3011046678 citedByCount "1" @default.
- W3011046678 countsByYear W30110466782022 @default.
- W3011046678 crossrefType "journal-article" @default.
- W3011046678 hasAuthorship W3011046678A5000539432 @default.
- W3011046678 hasAuthorship W3011046678A5034647533 @default.
- W3011046678 hasAuthorship W3011046678A5037568296 @default.
- W3011046678 hasAuthorship W3011046678A5065333876 @default.
- W3011046678 hasBestOaLocation W30110466781 @default.
- W3011046678 hasConcept C105795698 @default.
- W3011046678 hasConcept C116915560 @default.
- W3011046678 hasConcept C117251300 @default.
- W3011046678 hasConcept C119857082 @default.
- W3011046678 hasConcept C121332964 @default.
- W3011046678 hasConcept C127413603 @default.
- W3011046678 hasConcept C153294291 @default.
- W3011046678 hasConcept C2776023875 @default.
- W3011046678 hasConcept C33923547 @default.
- W3011046678 hasConcept C41008148 @default.
- W3011046678 hasConcept C44154836 @default.
- W3011046678 hasConcept C50644808 @default.
- W3011046678 hasConceptScore W3011046678C105795698 @default.
- W3011046678 hasConceptScore W3011046678C116915560 @default.
- W3011046678 hasConceptScore W3011046678C117251300 @default.
- W3011046678 hasConceptScore W3011046678C119857082 @default.
- W3011046678 hasConceptScore W3011046678C121332964 @default.
- W3011046678 hasConceptScore W3011046678C127413603 @default.
- W3011046678 hasConceptScore W3011046678C153294291 @default.
- W3011046678 hasConceptScore W3011046678C2776023875 @default.
- W3011046678 hasConceptScore W3011046678C33923547 @default.
- W3011046678 hasConceptScore W3011046678C41008148 @default.
- W3011046678 hasConceptScore W3011046678C44154836 @default.
- W3011046678 hasConceptScore W3011046678C50644808 @default.
- W3011046678 hasIssue "3" @default.
- W3011046678 hasLocation W30110466781 @default.
- W3011046678 hasLocation W30110466782 @default.
- W3011046678 hasOpenAccess W3011046678 @default.
- W3011046678 hasPrimaryLocation W30110466781 @default.
- W3011046678 hasRelatedWork W2147596601 @default.
- W3011046678 hasRelatedWork W2149926420 @default.
- W3011046678 hasRelatedWork W2163740454 @default.
- W3011046678 hasRelatedWork W2169667994 @default.
- W3011046678 hasRelatedWork W2349896076 @default.
- W3011046678 hasRelatedWork W2356622742 @default.
- W3011046678 hasRelatedWork W2386387936 @default.
- W3011046678 hasRelatedWork W2605638096 @default.
- W3011046678 hasRelatedWork W4210487405 @default.
- W3011046678 hasRelatedWork W2234357163 @default.
- W3011046678 hasVolume "7" @default.
- W3011046678 isParatext "false" @default.
- W3011046678 isRetracted "false" @default.
- W3011046678 magId "3011046678" @default.
- W3011046678 workType "article" @default.