Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011109292> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3011109292 abstract "Heterogeneous multi-modal medical imaging data need to be properly handled in classification. Currently, generating models using multi-modal imaging data has become a common practice and greatly benefits the brain disorder diagnosis, which also holds considerable clinical potential. Although the majority of classification studies focus on using features from single modality, there is substantial evidence suggesting that classification based on multi-modal features is on upward trend. Hence, effective integration of heterogeneous data is in urgent demand. Here, we proposed a multi-kernel SVM for schizophrenia classification with nested 10-fold cross validation, which could integrate multi-modal data using the subspace similarity of the decomposed components in each MRI modality. To validate the effectiveness of the proposed method, we performed experiments on two independent datasets with three different modalities to classify schizophrenia patients and healthy controls. Specifically, multi-modal fusion method was first applied on preprocessed fMRI, DTI and sMRI data to generate components that could be used for classification. Then multi-kernel SVM models were trained on the selected component features using subspace similarity measures, and were tested on independent validation data across sites. The results on both datasets demonstrated that our method achieved accuracies of 87.6% and 79.9% separately on two datasets when combining all three modalities, which outperformed alternative methods and might provide potential biomarkers for cross-site classification and co-varying components among different modalities." @default.
- W3011109292 created "2020-03-23" @default.
- W3011109292 creator A5032850756 @default.
- W3011109292 creator A5041488086 @default.
- W3011109292 creator A5073577615 @default.
- W3011109292 date "2020-03-16" @default.
- W3011109292 modified "2023-10-16" @default.
- W3011109292 title "Multi-modal component subspace-similarity-based multi-kernel SVM for schizophrenia classification" @default.
- W3011109292 doi "https://doi.org/10.1117/12.2550339" @default.
- W3011109292 hasPublicationYear "2020" @default.
- W3011109292 type Work @default.
- W3011109292 sameAs 3011109292 @default.
- W3011109292 citedByCount "1" @default.
- W3011109292 countsByYear W30111092922022 @default.
- W3011109292 crossrefType "proceedings-article" @default.
- W3011109292 hasAuthorship W3011109292A5032850756 @default.
- W3011109292 hasAuthorship W3011109292A5041488086 @default.
- W3011109292 hasAuthorship W3011109292A5073577615 @default.
- W3011109292 hasConcept C103278499 @default.
- W3011109292 hasConcept C114614502 @default.
- W3011109292 hasConcept C115961682 @default.
- W3011109292 hasConcept C119857082 @default.
- W3011109292 hasConcept C12267149 @default.
- W3011109292 hasConcept C124101348 @default.
- W3011109292 hasConcept C144024400 @default.
- W3011109292 hasConcept C153180895 @default.
- W3011109292 hasConcept C154945302 @default.
- W3011109292 hasConcept C185592680 @default.
- W3011109292 hasConcept C188027245 @default.
- W3011109292 hasConcept C2779903281 @default.
- W3011109292 hasConcept C2780226545 @default.
- W3011109292 hasConcept C32834561 @default.
- W3011109292 hasConcept C33923547 @default.
- W3011109292 hasConcept C36289849 @default.
- W3011109292 hasConcept C41008148 @default.
- W3011109292 hasConcept C71139939 @default.
- W3011109292 hasConcept C74193536 @default.
- W3011109292 hasConceptScore W3011109292C103278499 @default.
- W3011109292 hasConceptScore W3011109292C114614502 @default.
- W3011109292 hasConceptScore W3011109292C115961682 @default.
- W3011109292 hasConceptScore W3011109292C119857082 @default.
- W3011109292 hasConceptScore W3011109292C12267149 @default.
- W3011109292 hasConceptScore W3011109292C124101348 @default.
- W3011109292 hasConceptScore W3011109292C144024400 @default.
- W3011109292 hasConceptScore W3011109292C153180895 @default.
- W3011109292 hasConceptScore W3011109292C154945302 @default.
- W3011109292 hasConceptScore W3011109292C185592680 @default.
- W3011109292 hasConceptScore W3011109292C188027245 @default.
- W3011109292 hasConceptScore W3011109292C2779903281 @default.
- W3011109292 hasConceptScore W3011109292C2780226545 @default.
- W3011109292 hasConceptScore W3011109292C32834561 @default.
- W3011109292 hasConceptScore W3011109292C33923547 @default.
- W3011109292 hasConceptScore W3011109292C36289849 @default.
- W3011109292 hasConceptScore W3011109292C41008148 @default.
- W3011109292 hasConceptScore W3011109292C71139939 @default.
- W3011109292 hasConceptScore W3011109292C74193536 @default.
- W3011109292 hasLocation W30111092921 @default.
- W3011109292 hasOpenAccess W3011109292 @default.
- W3011109292 hasPrimaryLocation W30111092921 @default.
- W3011109292 hasRelatedWork W10267022 @default.
- W3011109292 hasRelatedWork W12634471 @default.
- W3011109292 hasRelatedWork W13034104 @default.
- W3011109292 hasRelatedWork W13534744 @default.
- W3011109292 hasRelatedWork W3987941 @default.
- W3011109292 hasRelatedWork W4703449 @default.
- W3011109292 hasRelatedWork W6229082 @default.
- W3011109292 hasRelatedWork W6717794 @default.
- W3011109292 hasRelatedWork W728297 @default.
- W3011109292 hasRelatedWork W845024 @default.
- W3011109292 isParatext "false" @default.
- W3011109292 isRetracted "false" @default.
- W3011109292 magId "3011109292" @default.
- W3011109292 workType "article" @default.