Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011124015> ?p ?o ?g. }
- W3011124015 endingPage "439" @default.
- W3011124015 startingPage "428" @default.
- W3011124015 abstract "Background. Accurate prediction of clinical impairment in upper-extremity motor function following therapy in chronic stroke patients is a difficult task for clinicians but is key in prescribing appropriate therapeutic strategies. Machine learning is a highly promising avenue with which to improve prediction accuracy in clinical practice. Objectives. The objective was to evaluate the performance of 5 machine learning methods in predicting postintervention upper-extremity motor impairment in chronic stroke patients using demographic, clinical, neurophysiological, and imaging input variables. Methods. A total of 102 patients (female: 31%, age 61 ± 11 years) were included. The upper-extremity Fugl-Meyer Assessment (UE-FMA) was used to assess motor impairment of the upper limb before and after intervention. Elastic net (EN), support vector machines, artificial neural networks, classification and regression trees, and random forest were used to predict postintervention UE-FMA. The performances of methods were compared using cross-validated R 2 . Results. EN performed significantly better than other methods in predicting postintervention UE-FMA using demographic and baseline clinical data (median [Formula: see text] P < .05). Preintervention UE-FMA and the difference in motor threshold (MT) between the affected and unaffected hemispheres were the strongest predictors. The difference in MT had greater importance than the absence or presence of a motor-evoked potential (MEP) in the affected hemisphere. Conclusion. Machine learning methods may enable clinicians to accurately predict a chronic stroke patient’s postintervention UE-FMA. Interhemispheric difference in the MT is an important predictor of chronic stroke patients’ response to therapy and, therefore, could be included in prospective studies." @default.
- W3011124015 created "2020-03-23" @default.
- W3011124015 creator A5004787126 @default.
- W3011124015 creator A5019661384 @default.
- W3011124015 creator A5025877936 @default.
- W3011124015 creator A5031732445 @default.
- W3011124015 creator A5041541495 @default.
- W3011124015 creator A5045538393 @default.
- W3011124015 creator A5058570841 @default.
- W3011124015 creator A5077179906 @default.
- W3011124015 creator A5079836637 @default.
- W3011124015 creator A5081308782 @default.
- W3011124015 date "2020-03-20" @default.
- W3011124015 modified "2023-10-02" @default.
- W3011124015 title "Machine Learning Methods Predict Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke" @default.
- W3011124015 cites W1782354729 @default.
- W3011124015 cites W1968452917 @default.
- W3011124015 cites W1993947536 @default.
- W3011124015 cites W1997228011 @default.
- W3011124015 cites W2002016471 @default.
- W3011124015 cites W2013788096 @default.
- W3011124015 cites W2024120661 @default.
- W3011124015 cites W2024892001 @default.
- W3011124015 cites W2049711494 @default.
- W3011124015 cites W2049929913 @default.
- W3011124015 cites W2069504513 @default.
- W3011124015 cites W2073633782 @default.
- W3011124015 cites W2080032473 @default.
- W3011124015 cites W2081107174 @default.
- W3011124015 cites W2083844448 @default.
- W3011124015 cites W2085434701 @default.
- W3011124015 cites W2090423666 @default.
- W3011124015 cites W2095845270 @default.
- W3011124015 cites W2098060666 @default.
- W3011124015 cites W2098661447 @default.
- W3011124015 cites W2114441144 @default.
- W3011124015 cites W2115362480 @default.
- W3011124015 cites W2115949595 @default.
- W3011124015 cites W2120701355 @default.
- W3011124015 cites W2122048922 @default.
- W3011124015 cites W2122825543 @default.
- W3011124015 cites W2129291496 @default.
- W3011124015 cites W2133561518 @default.
- W3011124015 cites W2136404265 @default.
- W3011124015 cites W2140358254 @default.
- W3011124015 cites W2145979322 @default.
- W3011124015 cites W2148143831 @default.
- W3011124015 cites W2149490453 @default.
- W3011124015 cites W2152402353 @default.
- W3011124015 cites W2158196600 @default.
- W3011124015 cites W2158585626 @default.
- W3011124015 cites W2163318177 @default.
- W3011124015 cites W2165409154 @default.
- W3011124015 cites W2171294059 @default.
- W3011124015 cites W2308560412 @default.
- W3011124015 cites W2417531770 @default.
- W3011124015 cites W2470287356 @default.
- W3011124015 cites W2472295098 @default.
- W3011124015 cites W2481767376 @default.
- W3011124015 cites W2507891125 @default.
- W3011124015 cites W2551091233 @default.
- W3011124015 cites W2592255797 @default.
- W3011124015 cites W2726447256 @default.
- W3011124015 cites W2756347284 @default.
- W3011124015 cites W2766416772 @default.
- W3011124015 cites W2884615806 @default.
- W3011124015 cites W2885074512 @default.
- W3011124015 cites W2892142597 @default.
- W3011124015 cites W2893462288 @default.
- W3011124015 cites W2896236534 @default.
- W3011124015 cites W2911964244 @default.
- W3011124015 cites W2926545412 @default.
- W3011124015 cites W2953750796 @default.
- W3011124015 cites W3102360731 @default.
- W3011124015 cites W4232202426 @default.
- W3011124015 doi "https://doi.org/10.1177/1545968320909796" @default.
- W3011124015 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7217740" @default.
- W3011124015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32193984" @default.
- W3011124015 hasPublicationYear "2020" @default.
- W3011124015 type Work @default.
- W3011124015 sameAs 3011124015 @default.
- W3011124015 citedByCount "36" @default.
- W3011124015 countsByYear W30111240152020 @default.
- W3011124015 countsByYear W30111240152021 @default.
- W3011124015 countsByYear W30111240152022 @default.
- W3011124015 countsByYear W30111240152023 @default.
- W3011124015 crossrefType "journal-article" @default.
- W3011124015 hasAuthorship W3011124015A5004787126 @default.
- W3011124015 hasAuthorship W3011124015A5019661384 @default.
- W3011124015 hasAuthorship W3011124015A5025877936 @default.
- W3011124015 hasAuthorship W3011124015A5031732445 @default.
- W3011124015 hasAuthorship W3011124015A5041541495 @default.
- W3011124015 hasAuthorship W3011124015A5045538393 @default.
- W3011124015 hasAuthorship W3011124015A5058570841 @default.
- W3011124015 hasAuthorship W3011124015A5077179906 @default.
- W3011124015 hasAuthorship W3011124015A5079836637 @default.
- W3011124015 hasAuthorship W3011124015A5081308782 @default.
- W3011124015 hasBestOaLocation W30111240152 @default.