Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011125887> ?p ?o ?g. }
- W3011125887 endingPage "104505" @default.
- W3011125887 startingPage "104505" @default.
- W3011125887 abstract "Abstract Avoiding failures of corroded steel structures are critical in offshore oil and gas operations. An accurate prediction of maximum depth of pitting corrosion in oil and gas pipelines has significance importance, not only to prevent potential accidents in future but also to reduce the economic charges to both industry and owners. In the present paper, efficient hybrid intelligent model based on the feasibility of Support Vector Regression (SVR) has been developed to predict the maximum depth of pitting corrosion in oil and gas pipelines, whereas the performance of well-known meta-heuristic optimization techniques, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Firefly Algorithm (FFA), are considered to select optimal SVR hyper-parameters. These nature-inspired algorithms are capable of presenting precise optimal predictions and therefore, hybrid models are developed to integrate SVR with GA, PSO, and FFA techniques. The performances of the proposed models are compared with the traditional SVR model where its hyper-parameters are attained through trial and error process on the one hand and empirical models on the other. The developed models have been applied to a large database of maximum pitting corrosion depth. Computational results indicate that hybrid SVR models are efficient tools, which are capable of conducting a more precise prediction of maximum pitting corrosion depth. Moreover, the results revealed that the SVR-FFA model outperformed all other models considered in this study. The developed SVR-FFA model could be adopted to support pipeline operators in the maintenance decision-making process of oil and gas facilities." @default.
- W3011125887 created "2020-03-23" @default.
- W3011125887 creator A5021438991 @default.
- W3011125887 creator A5037648726 @default.
- W3011125887 creator A5049427526 @default.
- W3011125887 creator A5053998535 @default.
- W3011125887 creator A5057968563 @default.
- W3011125887 creator A5068268080 @default.
- W3011125887 date "2020-05-01" @default.
- W3011125887 modified "2023-10-07" @default.
- W3011125887 title "Prediction of maximum pitting corrosion depth in oil and gas pipelines" @default.
- W3011125887 cites W1436320185 @default.
- W3011125887 cites W1973995342 @default.
- W3011125887 cites W1999133083 @default.
- W3011125887 cites W2002644193 @default.
- W3011125887 cites W2005222300 @default.
- W3011125887 cites W2012520221 @default.
- W3011125887 cites W2016922085 @default.
- W3011125887 cites W2029133056 @default.
- W3011125887 cites W2029748544 @default.
- W3011125887 cites W2045177228 @default.
- W3011125887 cites W2047246880 @default.
- W3011125887 cites W2048515023 @default.
- W3011125887 cites W2051210515 @default.
- W3011125887 cites W2054266142 @default.
- W3011125887 cites W2055571659 @default.
- W3011125887 cites W2059640878 @default.
- W3011125887 cites W2063545248 @default.
- W3011125887 cites W2063656376 @default.
- W3011125887 cites W2066995518 @default.
- W3011125887 cites W2076656703 @default.
- W3011125887 cites W2078792643 @default.
- W3011125887 cites W2092262205 @default.
- W3011125887 cites W2112755393 @default.
- W3011125887 cites W2152195021 @default.
- W3011125887 cites W2154943049 @default.
- W3011125887 cites W2432841566 @default.
- W3011125887 cites W2472474259 @default.
- W3011125887 cites W2489850253 @default.
- W3011125887 cites W2551032648 @default.
- W3011125887 cites W2748606210 @default.
- W3011125887 cites W2791336691 @default.
- W3011125887 cites W2794931824 @default.
- W3011125887 cites W2801312005 @default.
- W3011125887 cites W2884204400 @default.
- W3011125887 cites W2895154065 @default.
- W3011125887 cites W2908258656 @default.
- W3011125887 cites W2910421668 @default.
- W3011125887 cites W2987607719 @default.
- W3011125887 cites W2998136535 @default.
- W3011125887 cites W3005398182 @default.
- W3011125887 doi "https://doi.org/10.1016/j.engfailanal.2020.104505" @default.
- W3011125887 hasPublicationYear "2020" @default.
- W3011125887 type Work @default.
- W3011125887 sameAs 3011125887 @default.
- W3011125887 citedByCount "64" @default.
- W3011125887 countsByYear W30111258872020 @default.
- W3011125887 countsByYear W30111258872021 @default.
- W3011125887 countsByYear W30111258872022 @default.
- W3011125887 countsByYear W30111258872023 @default.
- W3011125887 crossrefType "journal-article" @default.
- W3011125887 hasAuthorship W3011125887A5021438991 @default.
- W3011125887 hasAuthorship W3011125887A5037648726 @default.
- W3011125887 hasAuthorship W3011125887A5049427526 @default.
- W3011125887 hasAuthorship W3011125887A5053998535 @default.
- W3011125887 hasAuthorship W3011125887A5057968563 @default.
- W3011125887 hasAuthorship W3011125887A5068268080 @default.
- W3011125887 hasConcept C127313418 @default.
- W3011125887 hasConcept C127413603 @default.
- W3011125887 hasConcept C175309249 @default.
- W3011125887 hasConcept C191897082 @default.
- W3011125887 hasConcept C192562407 @default.
- W3011125887 hasConcept C20625102 @default.
- W3011125887 hasConcept C2779720300 @default.
- W3011125887 hasConcept C39432304 @default.
- W3011125887 hasConcept C548081761 @default.
- W3011125887 hasConcept C68189081 @default.
- W3011125887 hasConcept C77595967 @default.
- W3011125887 hasConcept C78762247 @default.
- W3011125887 hasConcept C87717796 @default.
- W3011125887 hasConceptScore W3011125887C127313418 @default.
- W3011125887 hasConceptScore W3011125887C127413603 @default.
- W3011125887 hasConceptScore W3011125887C175309249 @default.
- W3011125887 hasConceptScore W3011125887C191897082 @default.
- W3011125887 hasConceptScore W3011125887C192562407 @default.
- W3011125887 hasConceptScore W3011125887C20625102 @default.
- W3011125887 hasConceptScore W3011125887C2779720300 @default.
- W3011125887 hasConceptScore W3011125887C39432304 @default.
- W3011125887 hasConceptScore W3011125887C548081761 @default.
- W3011125887 hasConceptScore W3011125887C68189081 @default.
- W3011125887 hasConceptScore W3011125887C77595967 @default.
- W3011125887 hasConceptScore W3011125887C78762247 @default.
- W3011125887 hasConceptScore W3011125887C87717796 @default.
- W3011125887 hasLocation W30111258871 @default.
- W3011125887 hasOpenAccess W3011125887 @default.
- W3011125887 hasPrimaryLocation W30111258871 @default.
- W3011125887 hasRelatedWork W2031331447 @default.
- W3011125887 hasRelatedWork W2041091508 @default.