Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011151574> ?p ?o ?g. }
- W3011151574 endingPage "124738" @default.
- W3011151574 startingPage "124738" @default.
- W3011151574 abstract "• VOF-DEM is developed for simulating the slurry Taylor flow (STF). • Numerical problem is solved for applying refined mesh for CFD-DEM simulations. • Body-fixed frames of reference are introduced to aid the analysis of STF. • Three distinctly different solid distribution patterns are observed. • Relatively uniform solid distribution is achievable for Re ′ < 550 and St p < 0.1. Solid particle distribution determines the reactor internal phases placement and the contact mode between catalyst particles and the liquid phase, thus plays a key role in dictating the overall performance of slurry Taylor flow-based microreactors. This study numerically investigates the distribution characteristics of particles within liquid slugs (reactors) in a vertical capillary tube, with the aim to describe the corresponding underlying mechanisms. The Volume of Fluid (VOF) method was deployed to solve the evolution of transient gas-liquid interfaces, whilst the motion of individual particles was directly tracked using the Discrete Element Method (DEM). Various fluid forces were considered based on the fully resolved Taylor flow field. Different body-fixed frames of reference were introduced to aid the analysis of the results. The particle distribution was found strongly dependent on the liquid flow field and particle physical properties, described in this study using the slurry Reynolds number ( Re ' ) and particle Stokes number ( St p ), respectively. As Re ' increased, the liquid flow experienced three distinctly different circulation patterns. Accordingly, three different particle distribution patterns were observed: I , particles distributed in the slug central region when Re ' ≤ 47 ; II , particles were trapped inside the liquid circulations for Re ' ∈ 95 , 190 ; and III , particles distributed at the edges of the liquid circulations when Re ' ≥ 379 . III was the predominant particle distribution pattern in slurry Taylor flow systems. The drag force was found to be the main force governing the vertical particle motion, whilst shear lift force and horizontal drag force were the main forces driving the lateral particle motion. Generally, as Re ' or St p increased, particles tended to migrate from the core to the edge of the liquid circulations, leading to a more nonuniform particle distribution. The solid volume fraction variance ( σ 2 ) of 0.0025 could be viewed as the threshold less than which the particle distribution in the liquid slugs was considered uniform. The relatively uniform particle distribution (with σ 2 ≤ 0.0025 ) was achievable for Re ' < 550 and St p < 0.1 ." @default.
- W3011151574 created "2020-03-23" @default.
- W3011151574 creator A5007483884 @default.
- W3011151574 creator A5036265410 @default.
- W3011151574 creator A5055670893 @default.
- W3011151574 creator A5082317418 @default.
- W3011151574 creator A5082486967 @default.
- W3011151574 creator A5084782670 @default.
- W3011151574 date "2020-09-01" @default.
- W3011151574 modified "2023-10-01" @default.
- W3011151574 title "VOF-DEM study of solid distribution characteristics in slurry Taylor flow-based multiphase microreactors" @default.
- W3011151574 cites W1021109584 @default.
- W3011151574 cites W1966209019 @default.
- W3011151574 cites W1969432029 @default.
- W3011151574 cites W1973206369 @default.
- W3011151574 cites W1973686248 @default.
- W3011151574 cites W1977228083 @default.
- W3011151574 cites W1980547401 @default.
- W3011151574 cites W1981472507 @default.
- W3011151574 cites W1990543244 @default.
- W3011151574 cites W1994079802 @default.
- W3011151574 cites W1994429572 @default.
- W3011151574 cites W1998506097 @default.
- W3011151574 cites W1999467008 @default.
- W3011151574 cites W2001263565 @default.
- W3011151574 cites W2001588536 @default.
- W3011151574 cites W2010421733 @default.
- W3011151574 cites W2011454852 @default.
- W3011151574 cites W2013441733 @default.
- W3011151574 cites W2016737004 @default.
- W3011151574 cites W2020881546 @default.
- W3011151574 cites W2023808334 @default.
- W3011151574 cites W2032478012 @default.
- W3011151574 cites W2034606122 @default.
- W3011151574 cites W2039538577 @default.
- W3011151574 cites W2041439150 @default.
- W3011151574 cites W2041772321 @default.
- W3011151574 cites W2042269746 @default.
- W3011151574 cites W2042309274 @default.
- W3011151574 cites W2045236294 @default.
- W3011151574 cites W2047190012 @default.
- W3011151574 cites W2051623369 @default.
- W3011151574 cites W2054434338 @default.
- W3011151574 cites W2055611324 @default.
- W3011151574 cites W2063330478 @default.
- W3011151574 cites W2070859965 @default.
- W3011151574 cites W2075217728 @default.
- W3011151574 cites W2075823074 @default.
- W3011151574 cites W2079188093 @default.
- W3011151574 cites W2079287490 @default.
- W3011151574 cites W2083073434 @default.
- W3011151574 cites W2084573902 @default.
- W3011151574 cites W2084736284 @default.
- W3011151574 cites W2089956497 @default.
- W3011151574 cites W2090022334 @default.
- W3011151574 cites W2092703727 @default.
- W3011151574 cites W2098651518 @default.
- W3011151574 cites W2103790748 @default.
- W3011151574 cites W2107134869 @default.
- W3011151574 cites W2110187357 @default.
- W3011151574 cites W2110778274 @default.
- W3011151574 cites W2112731516 @default.
- W3011151574 cites W2114764875 @default.
- W3011151574 cites W2118687824 @default.
- W3011151574 cites W2120568690 @default.
- W3011151574 cites W2127336961 @default.
- W3011151574 cites W2135162558 @default.
- W3011151574 cites W2138297496 @default.
- W3011151574 cites W2155004251 @default.
- W3011151574 cites W2316710940 @default.
- W3011151574 cites W2332148416 @default.
- W3011151574 cites W2602603971 @default.
- W3011151574 cites W2758328261 @default.
- W3011151574 cites W2762770491 @default.
- W3011151574 cites W2782559400 @default.
- W3011151574 cites W2788972477 @default.
- W3011151574 cites W2887202518 @default.
- W3011151574 cites W2962832221 @default.
- W3011151574 cites W2964342328 @default.
- W3011151574 cites W654094372 @default.
- W3011151574 cites W761654313 @default.
- W3011151574 doi "https://doi.org/10.1016/j.cej.2020.124738" @default.
- W3011151574 hasPublicationYear "2020" @default.
- W3011151574 type Work @default.
- W3011151574 sameAs 3011151574 @default.
- W3011151574 citedByCount "31" @default.
- W3011151574 countsByYear W30111515742020 @default.
- W3011151574 countsByYear W30111515742021 @default.
- W3011151574 countsByYear W30111515742022 @default.
- W3011151574 countsByYear W30111515742023 @default.
- W3011151574 crossrefType "journal-article" @default.
- W3011151574 hasAuthorship W3011151574A5007483884 @default.
- W3011151574 hasAuthorship W3011151574A5036265410 @default.
- W3011151574 hasAuthorship W3011151574A5055670893 @default.
- W3011151574 hasAuthorship W3011151574A5082317418 @default.
- W3011151574 hasAuthorship W3011151574A5082486967 @default.
- W3011151574 hasAuthorship W3011151574A5084782670 @default.
- W3011151574 hasConcept C111368507 @default.