Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011170049> ?p ?o ?g. }
- W3011170049 abstract "Service robots are a potentially useful aid for elderly people or those with impairments. An example of a task that a service robot might be required to complete is object fetching; i.e. retrieving an object and bringing it to the person. However, the ability to recognize the many household objects a robot may encounter remains an open problem; this problem is the focus of this thesis. A MOVO robot was used for experiments, which is a mobile manipulator equipped with two 6-DOF (degrees of freedom) arms and a Kinect sensor. The first part of this thesis involved developing a perception pipeline for MOVO that processes raw sensor data into a format usable by the motion planner. The performance of several different object recognition algorithms was compared in a cup detection task. It was determined that a CNN (Convolutional Neural Network) outperformed other methods, but it was noted that it requires a significant number of training images.Manually collecting information on all the objects a robot may encounter in a household is tedious and time-consuming. Therefore, the second part of this thesis examined the use of large-scale data from existing trademark databases. These databases contain logo images and a description of the goods and services the logo was registered under. For example, Pepsi is registered under soft drinks. In order to generate training data from the database images, RDSL (Randomization-based Data Synthesizer) was developed based on ideas from domain randomization. RDSL uses 3D rendering software to automatically generate synthetic data from the databases’ logo images. A CNN logo detector trained on RDSL synthetic data outperformed previous logo detectors trained on synthetic data. The use of this logo detector was also demonstrated in a practical implementation for object fetching by MOVO. Tests on this robot indicated promising results, despite not using any manually-labelled real world photos for training." @default.
- W3011170049 created "2020-03-23" @default.
- W3011170049 creator A5010202346 @default.
- W3011170049 date "2020-02-28" @default.
- W3011170049 modified "2023-09-27" @default.
- W3011170049 title "A perception pipeline exploiting trademark databases for service robots" @default.
- W3011170049 cites W131069610 @default.
- W3011170049 cites W1677409904 @default.
- W3011170049 cites W1686810756 @default.
- W3011170049 cites W1896369582 @default.
- W3011170049 cites W1903029394 @default.
- W3011170049 cites W1969483458 @default.
- W3011170049 cites W1971014294 @default.
- W3011170049 cites W1980972548 @default.
- W3011170049 cites W2000018820 @default.
- W3011170049 cites W2005756025 @default.
- W3011170049 cites W2033574012 @default.
- W3011170049 cites W2036414867 @default.
- W3011170049 cites W2085261163 @default.
- W3011170049 cites W2102605133 @default.
- W3011170049 cites W2110762409 @default.
- W3011170049 cites W2124386111 @default.
- W3011170049 cites W2124595631 @default.
- W3011170049 cites W2128990851 @default.
- W3011170049 cites W2136354320 @default.
- W3011170049 cites W2149933564 @default.
- W3011170049 cites W2152864241 @default.
- W3011170049 cites W2153038208 @default.
- W3011170049 cites W2160643963 @default.
- W3011170049 cites W2168359464 @default.
- W3011170049 cites W2170940415 @default.
- W3011170049 cites W2171084228 @default.
- W3011170049 cites W2194775991 @default.
- W3011170049 cites W2212845483 @default.
- W3011170049 cites W2274287116 @default.
- W3011170049 cites W2339179100 @default.
- W3011170049 cites W2560023338 @default.
- W3011170049 cites W2574981201 @default.
- W3011170049 cites W2604137468 @default.
- W3011170049 cites W2605102758 @default.
- W3011170049 cites W2612445135 @default.
- W3011170049 cites W2775795276 @default.
- W3011170049 cites W2886184223 @default.
- W3011170049 cites W2901136733 @default.
- W3011170049 cites W2919115771 @default.
- W3011170049 cites W2963163009 @default.
- W3011170049 cites W2963331658 @default.
- W3011170049 cites W2963403405 @default.
- W3011170049 cites W2964081807 @default.
- W3011170049 cites W2964115968 @default.
- W3011170049 cites W2965799486 @default.
- W3011170049 cites W2966912729 @default.
- W3011170049 cites W2979231406 @default.
- W3011170049 cites W3047986474 @default.
- W3011170049 cites W337580137 @default.
- W3011170049 cites W639708223 @default.
- W3011170049 doi "https://doi.org/10.14264/uql.2020.171" @default.
- W3011170049 hasPublicationYear "2020" @default.
- W3011170049 type Work @default.
- W3011170049 sameAs 3011170049 @default.
- W3011170049 citedByCount "0" @default.
- W3011170049 crossrefType "dissertation" @default.
- W3011170049 hasAuthorship W3011170049A5010202346 @default.
- W3011170049 hasConcept C154945302 @default.
- W3011170049 hasConcept C205711294 @default.
- W3011170049 hasConcept C23123220 @default.
- W3011170049 hasConcept C2776228582 @default.
- W3011170049 hasConcept C2781238097 @default.
- W3011170049 hasConcept C31972630 @default.
- W3011170049 hasConcept C41008148 @default.
- W3011170049 hasConcept C77088390 @default.
- W3011170049 hasConcept C90509273 @default.
- W3011170049 hasConceptScore W3011170049C154945302 @default.
- W3011170049 hasConceptScore W3011170049C205711294 @default.
- W3011170049 hasConceptScore W3011170049C23123220 @default.
- W3011170049 hasConceptScore W3011170049C2776228582 @default.
- W3011170049 hasConceptScore W3011170049C2781238097 @default.
- W3011170049 hasConceptScore W3011170049C31972630 @default.
- W3011170049 hasConceptScore W3011170049C41008148 @default.
- W3011170049 hasConceptScore W3011170049C77088390 @default.
- W3011170049 hasConceptScore W3011170049C90509273 @default.
- W3011170049 hasLocation W30111700491 @default.
- W3011170049 hasOpenAccess W3011170049 @default.
- W3011170049 hasPrimaryLocation W30111700491 @default.
- W3011170049 hasRelatedWork W1487434780 @default.
- W3011170049 hasRelatedWork W2096362853 @default.
- W3011170049 hasRelatedWork W2751200100 @default.
- W3011170049 hasRelatedWork W2780468003 @default.
- W3011170049 hasRelatedWork W2804584259 @default.
- W3011170049 hasRelatedWork W2885722830 @default.
- W3011170049 hasRelatedWork W2887245864 @default.
- W3011170049 hasRelatedWork W2888154659 @default.
- W3011170049 hasRelatedWork W2920947686 @default.
- W3011170049 hasRelatedWork W2942186895 @default.
- W3011170049 hasRelatedWork W2966912729 @default.
- W3011170049 hasRelatedWork W2967624246 @default.
- W3011170049 hasRelatedWork W2973914144 @default.
- W3011170049 hasRelatedWork W2983677144 @default.
- W3011170049 hasRelatedWork W3047268336 @default.
- W3011170049 hasRelatedWork W3049172837 @default.