Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011301911> ?p ?o ?g. }
- W3011301911 abstract "Although the properties of geomaterials vary spatially, geotechnical site investigations often take sparse measurements from a limited number of locations. To estimate geotechnical properties at unsampled locations, interpolation is often needed. This paper presents a Bayesian supervised learning method for interpolation of site-specific geotechnical data from sparse measurements. The interpolation is considered as a supervised learning problem and is solved under a Bayesian framework. Numerical examples are used to evaluate performance of the proposed method and to provide a comparative study with ordinary kriging, a popular interpolation method in geosciences applications. Results show that when the available measurement points are sparse and limited, the Bayesian supervised learning method performs better than kriging. When the number of measurement points is large, results from the proposed method and kriging are almost identical. In addition, the proposed method is data-driven and nonparametric. It does not require a detrending process when dealing with nonstationary data, and it bypasses estimation of a parametric form of autocorrelation structure (e.g., semivariogram in conventional kriging interpolation). A well-known challenge in kriging is the selection of a suitable semivariogram function form or a suitable trend function form for detrending, given sparse geotechnical data. The proposed Bayesian supervised learning method bypasses these challenges and is particularly suitable for nonstationary geotechnical data. Standard preprocessing steps such as outlier removal and noise reduction apply to Bayesian supervised learning." @default.
- W3011301911 created "2020-03-23" @default.
- W3011301911 creator A5012784925 @default.
- W3011301911 creator A5031751714 @default.
- W3011301911 creator A5071268993 @default.
- W3011301911 creator A5079594267 @default.
- W3011301911 date "2020-06-01" @default.
- W3011301911 modified "2023-09-30" @default.
- W3011301911 title "Bayesian Supervised Learning of Site-Specific Geotechnical Spatial Variability from Sparse Measurements" @default.
- W3011301911 cites W1006005309 @default.
- W3011301911 cites W1502922572 @default.
- W3011301911 cites W1505191356 @default.
- W3011301911 cites W1541288193 @default.
- W3011301911 cites W1588282782 @default.
- W3011301911 cites W1939682110 @default.
- W3011301911 cites W1970620492 @default.
- W3011301911 cites W1980600502 @default.
- W3011301911 cites W1989769999 @default.
- W3011301911 cites W1997038175 @default.
- W3011301911 cites W2018345902 @default.
- W3011301911 cites W2029871071 @default.
- W3011301911 cites W2034655727 @default.
- W3011301911 cites W2058732687 @default.
- W3011301911 cites W2071282831 @default.
- W3011301911 cites W2071284784 @default.
- W3011301911 cites W2074984119 @default.
- W3011301911 cites W2079850490 @default.
- W3011301911 cites W2080069982 @default.
- W3011301911 cites W2111547563 @default.
- W3011301911 cites W2114193021 @default.
- W3011301911 cites W2124037584 @default.
- W3011301911 cites W2129018774 @default.
- W3011301911 cites W2139701068 @default.
- W3011301911 cites W2146000945 @default.
- W3011301911 cites W2148154358 @default.
- W3011301911 cites W2150057984 @default.
- W3011301911 cites W2153700325 @default.
- W3011301911 cites W2164452299 @default.
- W3011301911 cites W2343569670 @default.
- W3011301911 cites W2410098808 @default.
- W3011301911 cites W2494343396 @default.
- W3011301911 cites W2499581503 @default.
- W3011301911 cites W2537646176 @default.
- W3011301911 cites W2563761673 @default.
- W3011301911 cites W2563965658 @default.
- W3011301911 cites W2589264741 @default.
- W3011301911 cites W2737039227 @default.
- W3011301911 cites W2766398999 @default.
- W3011301911 cites W2768536783 @default.
- W3011301911 cites W2888210379 @default.
- W3011301911 cites W2893736293 @default.
- W3011301911 cites W2901536682 @default.
- W3011301911 cites W3007816895 @default.
- W3011301911 cites W3008571237 @default.
- W3011301911 cites W4229562638 @default.
- W3011301911 doi "https://doi.org/10.1061/ajrua6.0001059" @default.
- W3011301911 hasPublicationYear "2020" @default.
- W3011301911 type Work @default.
- W3011301911 sameAs 3011301911 @default.
- W3011301911 citedByCount "16" @default.
- W3011301911 countsByYear W30113019112021 @default.
- W3011301911 countsByYear W30113019112022 @default.
- W3011301911 countsByYear W30113019112023 @default.
- W3011301911 crossrefType "journal-article" @default.
- W3011301911 hasAuthorship W3011301911A5012784925 @default.
- W3011301911 hasAuthorship W3011301911A5031751714 @default.
- W3011301911 hasAuthorship W3011301911A5071268993 @default.
- W3011301911 hasAuthorship W3011301911A5079594267 @default.
- W3011301911 hasConcept C104114177 @default.
- W3011301911 hasConcept C107673813 @default.
- W3011301911 hasConcept C11413529 @default.
- W3011301911 hasConcept C119857082 @default.
- W3011301911 hasConcept C137800194 @default.
- W3011301911 hasConcept C154881674 @default.
- W3011301911 hasConcept C154945302 @default.
- W3011301911 hasConcept C160234255 @default.
- W3011301911 hasConcept C203332170 @default.
- W3011301911 hasConcept C205203396 @default.
- W3011301911 hasConcept C31972630 @default.
- W3011301911 hasConcept C41008148 @default.
- W3011301911 hasConcept C79337645 @default.
- W3011301911 hasConcept C81692654 @default.
- W3011301911 hasConceptScore W3011301911C104114177 @default.
- W3011301911 hasConceptScore W3011301911C107673813 @default.
- W3011301911 hasConceptScore W3011301911C11413529 @default.
- W3011301911 hasConceptScore W3011301911C119857082 @default.
- W3011301911 hasConceptScore W3011301911C137800194 @default.
- W3011301911 hasConceptScore W3011301911C154881674 @default.
- W3011301911 hasConceptScore W3011301911C154945302 @default.
- W3011301911 hasConceptScore W3011301911C160234255 @default.
- W3011301911 hasConceptScore W3011301911C203332170 @default.
- W3011301911 hasConceptScore W3011301911C205203396 @default.
- W3011301911 hasConceptScore W3011301911C31972630 @default.
- W3011301911 hasConceptScore W3011301911C41008148 @default.
- W3011301911 hasConceptScore W3011301911C79337645 @default.
- W3011301911 hasConceptScore W3011301911C81692654 @default.
- W3011301911 hasIssue "2" @default.
- W3011301911 hasLocation W30113019111 @default.
- W3011301911 hasOpenAccess W3011301911 @default.
- W3011301911 hasPrimaryLocation W30113019111 @default.