Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011306351> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3011306351 abstract "Since the last decade, internet plays an imperative and vital role in the creation and retrieval of colossal amounts of information. With ever-increasing advancements in technological field and creation of data at an exponential rate, impertinent or irrelevant data is proliferating at a vast scale in commensuration with relevant data. Moreover, the usage of mobile phones has increased drastically, and phones are becoming an evident part of everyone's lives. With this, there is a notable increase in the number of spam messages from spammers. According to recent statistics, 96% of Indians receive unsolicited text messages every day. SMS spam is any unwanted or unsolicited text note in the form of weblink, promotional message or irrelevant text sent uncritically and non-selectively to your mobile phone, regularly for advertising purposes. The surge in unsolicited information across all platforms including mobile text messages and emails has created an expedited need for the advancement and refinement of more reliable filters to counteract the spam in these messages. Traditionally, rule-based approach is employed to counteract spam messages. According to this approach, a set of rules are employed on the messages by some authority manually. By this method, no favorable or assuring results will be shown because the rules need to regularly be restructured based on the source of spam messages, which is an arduous process. Instead, we use deep learning methods that are efficient and does not require any rules. Deep learning models require a set of training dataset samples to learn the rules from these SMS messages and build a text classifier that efficiently classifies spam from these messages. This paper presents a systematic review of employing deep learning methods namely, convolutional neural network and recurrent neural network on huge corpus of SMS texts to build a spam classifier that classifies messages as ham or spam." @default.
- W3011306351 created "2020-03-23" @default.
- W3011306351 creator A5022745720 @default.
- W3011306351 creator A5028574559 @default.
- W3011306351 date "2019-12-01" @default.
- W3011306351 modified "2023-09-23" @default.
- W3011306351 title "A Comparative Study of Deep Learning Methods for Spam Detection" @default.
- W3011306351 cites W1634549304 @default.
- W3011306351 cites W2036166268 @default.
- W3011306351 cites W2079452002 @default.
- W3011306351 cites W2088502410 @default.
- W3011306351 cites W2107012459 @default.
- W3011306351 cites W2152592596 @default.
- W3011306351 cites W2290086728 @default.
- W3011306351 cites W2294273408 @default.
- W3011306351 cites W2565439473 @default.
- W3011306351 cites W2591945600 @default.
- W3011306351 cites W2768745333 @default.
- W3011306351 cites W2768787743 @default.
- W3011306351 cites W2810387985 @default.
- W3011306351 cites W2900822988 @default.
- W3011306351 cites W2901782873 @default.
- W3011306351 cites W2907551343 @default.
- W3011306351 cites W2909791946 @default.
- W3011306351 cites W2911420856 @default.
- W3011306351 cites W2916077540 @default.
- W3011306351 cites W2949344452 @default.
- W3011306351 cites W2950944846 @default.
- W3011306351 cites W2952767732 @default.
- W3011306351 cites W2955419507 @default.
- W3011306351 cites W2969739743 @default.
- W3011306351 cites W2981840673 @default.
- W3011306351 doi "https://doi.org/10.1109/i-smac47947.2019.9032627" @default.
- W3011306351 hasPublicationYear "2019" @default.
- W3011306351 type Work @default.
- W3011306351 sameAs 3011306351 @default.
- W3011306351 citedByCount "12" @default.
- W3011306351 countsByYear W30113063512021 @default.
- W3011306351 countsByYear W30113063512022 @default.
- W3011306351 countsByYear W30113063512023 @default.
- W3011306351 crossrefType "proceedings-article" @default.
- W3011306351 hasAuthorship W3011306351A5022745720 @default.
- W3011306351 hasAuthorship W3011306351A5028574559 @default.
- W3011306351 hasConcept C108827166 @default.
- W3011306351 hasConcept C110875604 @default.
- W3011306351 hasConcept C111919701 @default.
- W3011306351 hasConcept C127735637 @default.
- W3011306351 hasConcept C136764020 @default.
- W3011306351 hasConcept C138885662 @default.
- W3011306351 hasConcept C154945302 @default.
- W3011306351 hasConcept C157310412 @default.
- W3011306351 hasConcept C158955206 @default.
- W3011306351 hasConcept C177264268 @default.
- W3011306351 hasConcept C199360897 @default.
- W3011306351 hasConcept C2777421447 @default.
- W3011306351 hasConcept C2778707766 @default.
- W3011306351 hasConcept C41008148 @default.
- W3011306351 hasConcept C41895202 @default.
- W3011306351 hasConcept C76155785 @default.
- W3011306351 hasConcept C98045186 @default.
- W3011306351 hasConceptScore W3011306351C108827166 @default.
- W3011306351 hasConceptScore W3011306351C110875604 @default.
- W3011306351 hasConceptScore W3011306351C111919701 @default.
- W3011306351 hasConceptScore W3011306351C127735637 @default.
- W3011306351 hasConceptScore W3011306351C136764020 @default.
- W3011306351 hasConceptScore W3011306351C138885662 @default.
- W3011306351 hasConceptScore W3011306351C154945302 @default.
- W3011306351 hasConceptScore W3011306351C157310412 @default.
- W3011306351 hasConceptScore W3011306351C158955206 @default.
- W3011306351 hasConceptScore W3011306351C177264268 @default.
- W3011306351 hasConceptScore W3011306351C199360897 @default.
- W3011306351 hasConceptScore W3011306351C2777421447 @default.
- W3011306351 hasConceptScore W3011306351C2778707766 @default.
- W3011306351 hasConceptScore W3011306351C41008148 @default.
- W3011306351 hasConceptScore W3011306351C41895202 @default.
- W3011306351 hasConceptScore W3011306351C76155785 @default.
- W3011306351 hasConceptScore W3011306351C98045186 @default.
- W3011306351 hasLocation W30113063511 @default.
- W3011306351 hasOpenAccess W3011306351 @default.
- W3011306351 hasPrimaryLocation W30113063511 @default.
- W3011306351 hasRelatedWork W10202958 @default.
- W3011306351 hasRelatedWork W10980763 @default.
- W3011306351 hasRelatedWork W12793662 @default.
- W3011306351 hasRelatedWork W13678974 @default.
- W3011306351 hasRelatedWork W6229082 @default.
- W3011306351 hasRelatedWork W6310906 @default.
- W3011306351 hasRelatedWork W7303821 @default.
- W3011306351 hasRelatedWork W8021486 @default.
- W3011306351 hasRelatedWork W9190101 @default.
- W3011306351 hasRelatedWork W9333608 @default.
- W3011306351 isParatext "false" @default.
- W3011306351 isRetracted "false" @default.
- W3011306351 magId "3011306351" @default.
- W3011306351 workType "article" @default.