Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011334092> ?p ?o ?g. }
- W3011334092 endingPage "3842" @default.
- W3011334092 startingPage "3834" @default.
- W3011334092 abstract "Recent studies have highlighted the importance of isocitrate dehydrogenase (IDH) mutational status in stratifying biologically distinct subgroups of gliomas. This study aimed to evaluate whether MRI-based radiomic features could improve the accuracy of survival predictions for lower grade gliomas over clinical and IDH status. Radiomic features (n = 250) were extracted from preoperative MRI data of 296 lower grade glioma patients from databases at our institutional (n = 205) and The Cancer Genome Atlas (TCGA)/The Cancer Imaging Archive (TCIA) (n = 91) datasets. For predicting overall survival, random survival forest models were trained with radiomic features; non-imaging prognostic factors including age, resection extent, WHO grade, and IDH status on the institutional dataset, and validated on the TCGA/TCIA dataset. The performance of the random survival forest (RSF) model and incremental value of radiomic features were assessed by time-dependent receiver operating characteristics. The radiomics RSF model identified 71 radiomic features to predict overall survival, which were successfully validated on TCGA/TCIA dataset (iAUC, 0.620; 95% CI, 0.501–0.756). Relative to the RSF model from the non-imaging prognostic parameters, the addition of radiomic features significantly improved the overall survival prediction accuracy of the random survival forest model (iAUC, 0.627 vs. 0.709; difference, 0.097; 95% CI, 0.003–0.209). Radiomic phenotyping with machine learning can improve survival prediction over clinical profile and genomic data for lower grade gliomas. • Radiomics analysis with machine learning can improve survival prediction over the non-imaging factors (clinical and molecular profiles) for lower grade gliomas, across different institutions." @default.
- W3011334092 created "2020-03-23" @default.
- W3011334092 creator A5005473685 @default.
- W3011334092 creator A5005492660 @default.
- W3011334092 creator A5007870374 @default.
- W3011334092 creator A5022027749 @default.
- W3011334092 creator A5035865220 @default.
- W3011334092 creator A5049496700 @default.
- W3011334092 creator A5065963667 @default.
- W3011334092 creator A5088611142 @default.
- W3011334092 date "2020-03-11" @default.
- W3011334092 modified "2023-09-25" @default.
- W3011334092 title "Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction" @default.
- W3011334092 cites W1812256879 @default.
- W3011334092 cites W1964150693 @default.
- W3011334092 cites W1971674000 @default.
- W3011334092 cites W1996190316 @default.
- W3011334092 cites W2040827479 @default.
- W3011334092 cites W2109242212 @default.
- W3011334092 cites W2116232743 @default.
- W3011334092 cites W2125403904 @default.
- W3011334092 cites W2126817554 @default.
- W3011334092 cites W2148564254 @default.
- W3011334092 cites W2155982020 @default.
- W3011334092 cites W2166219471 @default.
- W3011334092 cites W2174661749 @default.
- W3011334092 cites W2179124818 @default.
- W3011334092 cites W2221563957 @default.
- W3011334092 cites W2263206910 @default.
- W3011334092 cites W2276081132 @default.
- W3011334092 cites W2293040502 @default.
- W3011334092 cites W2366536035 @default.
- W3011334092 cites W2460918282 @default.
- W3011334092 cites W2465688795 @default.
- W3011334092 cites W2543055108 @default.
- W3011334092 cites W2613777097 @default.
- W3011334092 cites W2757838129 @default.
- W3011334092 cites W2767128594 @default.
- W3011334092 cites W2795899074 @default.
- W3011334092 cites W2892929309 @default.
- W3011334092 cites W2897228009 @default.
- W3011334092 cites W3099478002 @default.
- W3011334092 doi "https://doi.org/10.1007/s00330-020-06737-5" @default.
- W3011334092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32162004" @default.
- W3011334092 hasPublicationYear "2020" @default.
- W3011334092 type Work @default.
- W3011334092 sameAs 3011334092 @default.
- W3011334092 citedByCount "41" @default.
- W3011334092 countsByYear W30113340922012 @default.
- W3011334092 countsByYear W30113340922020 @default.
- W3011334092 countsByYear W30113340922021 @default.
- W3011334092 countsByYear W30113340922022 @default.
- W3011334092 countsByYear W30113340922023 @default.
- W3011334092 crossrefType "journal-article" @default.
- W3011334092 hasAuthorship W3011334092A5005473685 @default.
- W3011334092 hasAuthorship W3011334092A5005492660 @default.
- W3011334092 hasAuthorship W3011334092A5007870374 @default.
- W3011334092 hasAuthorship W3011334092A5022027749 @default.
- W3011334092 hasAuthorship W3011334092A5035865220 @default.
- W3011334092 hasAuthorship W3011334092A5049496700 @default.
- W3011334092 hasAuthorship W3011334092A5065963667 @default.
- W3011334092 hasAuthorship W3011334092A5088611142 @default.
- W3011334092 hasBestOaLocation W30113340922 @default.
- W3011334092 hasConcept C10515644 @default.
- W3011334092 hasConcept C118552586 @default.
- W3011334092 hasConcept C119857082 @default.
- W3011334092 hasConcept C126322002 @default.
- W3011334092 hasConcept C126838900 @default.
- W3011334092 hasConcept C143998085 @default.
- W3011334092 hasConcept C16568411 @default.
- W3011334092 hasConcept C169258074 @default.
- W3011334092 hasConcept C181199279 @default.
- W3011334092 hasConcept C2777150147 @default.
- W3011334092 hasConcept C2778227246 @default.
- W3011334092 hasConcept C2778559731 @default.
- W3011334092 hasConcept C2779889316 @default.
- W3011334092 hasConcept C3019894029 @default.
- W3011334092 hasConcept C41008148 @default.
- W3011334092 hasConcept C502942594 @default.
- W3011334092 hasConcept C55493867 @default.
- W3011334092 hasConcept C58471807 @default.
- W3011334092 hasConcept C71924100 @default.
- W3011334092 hasConcept C86803240 @default.
- W3011334092 hasConceptScore W3011334092C10515644 @default.
- W3011334092 hasConceptScore W3011334092C118552586 @default.
- W3011334092 hasConceptScore W3011334092C119857082 @default.
- W3011334092 hasConceptScore W3011334092C126322002 @default.
- W3011334092 hasConceptScore W3011334092C126838900 @default.
- W3011334092 hasConceptScore W3011334092C143998085 @default.
- W3011334092 hasConceptScore W3011334092C16568411 @default.
- W3011334092 hasConceptScore W3011334092C169258074 @default.
- W3011334092 hasConceptScore W3011334092C181199279 @default.
- W3011334092 hasConceptScore W3011334092C2777150147 @default.
- W3011334092 hasConceptScore W3011334092C2778227246 @default.
- W3011334092 hasConceptScore W3011334092C2778559731 @default.
- W3011334092 hasConceptScore W3011334092C2779889316 @default.
- W3011334092 hasConceptScore W3011334092C3019894029 @default.
- W3011334092 hasConceptScore W3011334092C41008148 @default.