Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011336065> ?p ?o ?g. }
- W3011336065 endingPage "2218" @default.
- W3011336065 startingPage "2218" @default.
- W3011336065 abstract "Determination of shear strength of soil is very important in civil engineering for foundation design, earth and rock fill dam design, highway and airfield design, stability of slopes and cuts, and in the design of coastal structures. In this study, a novel hybrid soft computing model (RF-PSO) of random forest (RF) and particle swarm optimization (PSO) was developed and used to estimate the undrained shear strength of soil based on the clay content (%), moisture content (%), specific gravity (%), void ratio (%), liquid limit (%), and plastic limit (%). In this study, the experimental results of 127 soil samples from national highway project Hai Phong-Thai Binh of Vietnam were used to generate datasets for training and validating models. Pearson correlation coefficient (R) method was used to evaluate and compare performance of the proposed model with single RF model. The results show that the proposed hybrid model (RF-PSO) achieved a high accuracy performance (R = 0.89) in the prediction of shear strength of soil. Validation of the models also indicated that RF-PSO model (R = 0.89 and Root Mean Square Error (RMSE) = 0.453) is superior to the single RF model without optimization (R = 0.87 and RMSE = 0.48). Thus, the proposed hybrid model (RF-PSO) can be used for accurate estimation of shear strength which can be used for the suitable designing of civil engineering structures." @default.
- W3011336065 created "2020-03-23" @default.
- W3011336065 creator A5016893251 @default.
- W3011336065 creator A5027233897 @default.
- W3011336065 creator A5030333293 @default.
- W3011336065 creator A5037364559 @default.
- W3011336065 creator A5046620343 @default.
- W3011336065 creator A5051780339 @default.
- W3011336065 creator A5053998535 @default.
- W3011336065 creator A5069214273 @default.
- W3011336065 creator A5070829177 @default.
- W3011336065 creator A5073893774 @default.
- W3011336065 date "2020-03-12" @default.
- W3011336065 modified "2023-10-10" @default.
- W3011336065 title "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil" @default.
- W3011336065 cites W1969560166 @default.
- W3011336065 cites W1970245951 @default.
- W3011336065 cites W1979315201 @default.
- W3011336065 cites W1990376605 @default.
- W3011336065 cites W1992893583 @default.
- W3011336065 cites W1996031526 @default.
- W3011336065 cites W1996891915 @default.
- W3011336065 cites W2001571496 @default.
- W3011336065 cites W2018775608 @default.
- W3011336065 cites W2019598541 @default.
- W3011336065 cites W2034979124 @default.
- W3011336065 cites W2048200489 @default.
- W3011336065 cites W2072740269 @default.
- W3011336065 cites W2081620141 @default.
- W3011336065 cites W2088905848 @default.
- W3011336065 cites W2095525122 @default.
- W3011336065 cites W2111393363 @default.
- W3011336065 cites W2116161277 @default.
- W3011336065 cites W2138454513 @default.
- W3011336065 cites W2158745924 @default.
- W3011336065 cites W2194451028 @default.
- W3011336065 cites W2287278712 @default.
- W3011336065 cites W2314082505 @default.
- W3011336065 cites W2329237660 @default.
- W3011336065 cites W2519206442 @default.
- W3011336065 cites W2519746072 @default.
- W3011336065 cites W2521299888 @default.
- W3011336065 cites W2615890952 @default.
- W3011336065 cites W2621028994 @default.
- W3011336065 cites W2752203326 @default.
- W3011336065 cites W2767363635 @default.
- W3011336065 cites W2791778019 @default.
- W3011336065 cites W2791884343 @default.
- W3011336065 cites W2797086020 @default.
- W3011336065 cites W2800057769 @default.
- W3011336065 cites W2807546324 @default.
- W3011336065 cites W2895224823 @default.
- W3011336065 cites W2898595828 @default.
- W3011336065 cites W2905650747 @default.
- W3011336065 cites W2911907286 @default.
- W3011336065 cites W2911964244 @default.
- W3011336065 cites W2913214568 @default.
- W3011336065 cites W2915074154 @default.
- W3011336065 cites W2921499992 @default.
- W3011336065 cites W2922356152 @default.
- W3011336065 cites W2923370583 @default.
- W3011336065 cites W2943118300 @default.
- W3011336065 cites W2943973631 @default.
- W3011336065 cites W2969554587 @default.
- W3011336065 cites W2972085861 @default.
- W3011336065 cites W2975358916 @default.
- W3011336065 cites W2988920695 @default.
- W3011336065 cites W2991237959 @default.
- W3011336065 cites W2999015335 @default.
- W3011336065 cites W2999205998 @default.
- W3011336065 cites W2999969809 @default.
- W3011336065 cites W3001229584 @default.
- W3011336065 cites W3007270451 @default.
- W3011336065 cites W3010479350 @default.
- W3011336065 cites W4236103016 @default.
- W3011336065 cites W596984334 @default.
- W3011336065 cites W862271535 @default.
- W3011336065 doi "https://doi.org/10.3390/su12062218" @default.
- W3011336065 hasPublicationYear "2020" @default.
- W3011336065 type Work @default.
- W3011336065 sameAs 3011336065 @default.
- W3011336065 citedByCount "68" @default.
- W3011336065 countsByYear W30113360652020 @default.
- W3011336065 countsByYear W30113360652021 @default.
- W3011336065 countsByYear W30113360652022 @default.
- W3011336065 countsByYear W30113360652023 @default.
- W3011336065 crossrefType "journal-article" @default.
- W3011336065 hasAuthorship W3011336065A5016893251 @default.
- W3011336065 hasAuthorship W3011336065A5027233897 @default.
- W3011336065 hasAuthorship W3011336065A5030333293 @default.
- W3011336065 hasAuthorship W3011336065A5037364559 @default.
- W3011336065 hasAuthorship W3011336065A5046620343 @default.
- W3011336065 hasAuthorship W3011336065A5051780339 @default.
- W3011336065 hasAuthorship W3011336065A5053998535 @default.
- W3011336065 hasAuthorship W3011336065A5069214273 @default.
- W3011336065 hasAuthorship W3011336065A5070829177 @default.
- W3011336065 hasAuthorship W3011336065A5073893774 @default.
- W3011336065 hasBestOaLocation W30113360651 @default.