Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011342695> ?p ?o ?g. }
- W3011342695 endingPage "117323" @default.
- W3011342695 startingPage "117323" @default.
- W3011342695 abstract "Buildings are responsible for a large portion of the overall energy consumption. With the rising penetration of renewable energies, the heating and cooling demand of buildings will be increasingly satisfied by heat pumps. However, faults in the heat pump systems reduce energy efficiency or cause system failure, leading to an increased demand for primary energy. Hence, fault detection algorithms (FDA) are used to identify faults before system failure or efficiency deterioration occurs. With the rise of artificial intelligence and big data as well as more detailed monitoring systems, data-driven FDA have become a focus of research in recent years, showing promising results with acceptable effort. However, studies often use specific training data sets, thus generating FDAs adapted to a specific experimental system. In this paper, we investigate whether FDAs trained on a fault data set gathered with a laboratory heat pump system can be deployed on a real-world application system without the need for expensive modifications. We also investigate a big data approach, in which we use data collected over an extended period of time to train the FDAs. To this end, we use a data set kindly provided by the National Institute of Standards and Technology (NIST) containing data for typical heat pump failures measured on a specially outfitted air-water heat pump. From this data, we extract a series of features as input for the FDAs and evaluate the importance of those features for the FDAs. We train the algorithms to detect faults on the NIST data set, and transfer the fitted FDAs to our own measurement data. The results show that the trained FDAs perform very well on the NIST data set, but poorly on the real-world data set. We identify several reasons for the FDAs’ poor performance and derive mitigating actions. We believe that big data approaches for FDAs are facing several issues beyond the simple gathering of large data quantities, especially the labelling of occurred faults and completeness of the data set." @default.
- W3011342695 created "2020-03-23" @default.
- W3011342695 creator A5042146726 @default.
- W3011342695 creator A5049278635 @default.
- W3011342695 creator A5059395098 @default.
- W3011342695 creator A5075311489 @default.
- W3011342695 date "2020-05-01" @default.
- W3011342695 modified "2023-10-13" @default.
- W3011342695 title "Real-world application of machine-learning-based fault detection trained with experimental data" @default.
- W3011342695 cites W1847878491 @default.
- W3011342695 cites W1988301066 @default.
- W3011342695 cites W2011301426 @default.
- W3011342695 cites W2014540231 @default.
- W3011342695 cites W2021187077 @default.
- W3011342695 cites W2040111659 @default.
- W3011342695 cites W2067637335 @default.
- W3011342695 cites W2077806872 @default.
- W3011342695 cites W2089662726 @default.
- W3011342695 cites W2109553965 @default.
- W3011342695 cites W2131694827 @default.
- W3011342695 cites W2364419577 @default.
- W3011342695 cites W2469115065 @default.
- W3011342695 cites W2607521821 @default.
- W3011342695 cites W2626991415 @default.
- W3011342695 cites W2735921494 @default.
- W3011342695 cites W2736710436 @default.
- W3011342695 cites W2770029710 @default.
- W3011342695 cites W2771169143 @default.
- W3011342695 cites W2807071118 @default.
- W3011342695 cites W2883193586 @default.
- W3011342695 cites W2884449598 @default.
- W3011342695 cites W2890630504 @default.
- W3011342695 cites W2914253649 @default.
- W3011342695 cites W2917083456 @default.
- W3011342695 cites W2920836448 @default.
- W3011342695 cites W2938814897 @default.
- W3011342695 cites W2943893658 @default.
- W3011342695 cites W2943906991 @default.
- W3011342695 cites W2957723078 @default.
- W3011342695 cites W2964583813 @default.
- W3011342695 cites W2969591044 @default.
- W3011342695 doi "https://doi.org/10.1016/j.energy.2020.117323" @default.
- W3011342695 hasPublicationYear "2020" @default.
- W3011342695 type Work @default.
- W3011342695 sameAs 3011342695 @default.
- W3011342695 citedByCount "48" @default.
- W3011342695 countsByYear W30113426952020 @default.
- W3011342695 countsByYear W30113426952021 @default.
- W3011342695 countsByYear W30113426952022 @default.
- W3011342695 countsByYear W30113426952023 @default.
- W3011342695 crossrefType "journal-article" @default.
- W3011342695 hasAuthorship W3011342695A5042146726 @default.
- W3011342695 hasAuthorship W3011342695A5049278635 @default.
- W3011342695 hasAuthorship W3011342695A5059395098 @default.
- W3011342695 hasAuthorship W3011342695A5075311489 @default.
- W3011342695 hasBestOaLocation W30113426951 @default.
- W3011342695 hasConcept C107706546 @default.
- W3011342695 hasConcept C111219384 @default.
- W3011342695 hasConcept C119599485 @default.
- W3011342695 hasConcept C119857082 @default.
- W3011342695 hasConcept C124101348 @default.
- W3011342695 hasConcept C127413603 @default.
- W3011342695 hasConcept C152745839 @default.
- W3011342695 hasConcept C154945302 @default.
- W3011342695 hasConcept C172707124 @default.
- W3011342695 hasConcept C188573790 @default.
- W3011342695 hasConcept C200601418 @default.
- W3011342695 hasConcept C204321447 @default.
- W3011342695 hasConcept C2742236 @default.
- W3011342695 hasConcept C2776461528 @default.
- W3011342695 hasConcept C41008148 @default.
- W3011342695 hasConcept C58489278 @default.
- W3011342695 hasConcept C75684735 @default.
- W3011342695 hasConcept C78519656 @default.
- W3011342695 hasConceptScore W3011342695C107706546 @default.
- W3011342695 hasConceptScore W3011342695C111219384 @default.
- W3011342695 hasConceptScore W3011342695C119599485 @default.
- W3011342695 hasConceptScore W3011342695C119857082 @default.
- W3011342695 hasConceptScore W3011342695C124101348 @default.
- W3011342695 hasConceptScore W3011342695C127413603 @default.
- W3011342695 hasConceptScore W3011342695C152745839 @default.
- W3011342695 hasConceptScore W3011342695C154945302 @default.
- W3011342695 hasConceptScore W3011342695C172707124 @default.
- W3011342695 hasConceptScore W3011342695C188573790 @default.
- W3011342695 hasConceptScore W3011342695C200601418 @default.
- W3011342695 hasConceptScore W3011342695C204321447 @default.
- W3011342695 hasConceptScore W3011342695C2742236 @default.
- W3011342695 hasConceptScore W3011342695C2776461528 @default.
- W3011342695 hasConceptScore W3011342695C41008148 @default.
- W3011342695 hasConceptScore W3011342695C58489278 @default.
- W3011342695 hasConceptScore W3011342695C75684735 @default.
- W3011342695 hasConceptScore W3011342695C78519656 @default.
- W3011342695 hasFunder F4320321469 @default.
- W3011342695 hasFunder F4320323803 @default.
- W3011342695 hasLocation W30113426951 @default.
- W3011342695 hasOpenAccess W3011342695 @default.
- W3011342695 hasPrimaryLocation W30113426951 @default.
- W3011342695 hasRelatedWork W2075485361 @default.