Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011353843> ?p ?o ?g. }
- W3011353843 endingPage "268" @default.
- W3011353843 startingPage "249" @default.
- W3011353843 abstract "The substitution method—an empirical approach for uncertainty assessment (adapted from the ISO 15530-3 guidelines) that is based on a comparison between repeated measurements of a calibrated standard workpiece and measurements of a test (uncalibrated) sample—has been the approach most adopted over the past decade for estimation of measurement uncertainties in dimensional metrology with X-ray computed tomography (CT). However, questions about how to apply the substitution (or use calibrated workpieces) for X-ray CT metrology persist because the substitution method does not always encompass all the most relevant CT measurement influencing factors. This paper discusses some issues with the direct application of the ISO 15530 series for the estimation of CT measurement uncertainties and reviews other empirical methods that can be applied in uncertainty analyses in CT metrology. Special attention is placed to the treatment of uncertainties in the case of ‘uncorrected’ measurement results (i.e., not compensated for bias), which for X-ray CT has traditionally been limited to the use of the root-sum-of-squares of standard uncertainties (RSSu) approach. This article investigates other possibilities for uncertainty estimation of ‘uncorrected’ results that could be applied to CT measurements, namely the root-sum-of-squares of expanded uncertainties (RSSU), the algebraic sum of expanded uncertainty with the signed bias (SUMU), the enlargement of the expanded uncertainty by adding the absolute value of the bias (SUMUMAX), and the so-called Uε method that sums the expanded uncertainty with the absolute value of the bias scaled by a factor ε assigned for a 95% distribution coverage. In addition, the alternative of using a maximum permissible error (MPE) statement—typically specified by the manufacturer of the CT instrument—to generate a rough estimate of the expanded uncertainties of CT measurements is considered. Through two examples using dimensional X-ray CT data, these possibilities are analyzed. From all the possibilities for estimation of uncertainties associated with CT dimensional measurements that are not compensated for bias, the RSSu method produced the largest uncertainty estimates and thus seems to be the most conservative approach. For dimensioning geometric features mostly ranging between 10 mm and 60 mm, the expanded uncertainties (k=2) computed with the RSSu method ranged from 0.6 μm up to 72.7 μm. It was with the asymmetrical SUMU approach that the smaller uncertainty intervals were generated. On the other hand, uncertainty bounds estimated with the MPE based approach changed little from a constant value (around ±9.5 μm), and, therefore, risk creating significant under- or over-estimation of the uncertainty intervals." @default.
- W3011353843 created "2020-03-23" @default.
- W3011353843 creator A5026769681 @default.
- W3011353843 creator A5081789094 @default.
- W3011353843 creator A5087613190 @default.
- W3011353843 date "2020-07-01" @default.
- W3011353843 modified "2023-10-16" @default.
- W3011353843 title "Empirical approaches to uncertainty analysis of X-ray computed tomography measurements: A review with examples" @default.
- W3011353843 cites W1883666949 @default.
- W3011353843 cites W1963844769 @default.
- W3011353843 cites W1965419631 @default.
- W3011353843 cites W1966450263 @default.
- W3011353843 cites W1966795084 @default.
- W3011353843 cites W1967300472 @default.
- W3011353843 cites W1980205955 @default.
- W3011353843 cites W1982201189 @default.
- W3011353843 cites W1983777606 @default.
- W3011353843 cites W1984327220 @default.
- W3011353843 cites W1986105902 @default.
- W3011353843 cites W1986545556 @default.
- W3011353843 cites W1994964718 @default.
- W3011353843 cites W1996028208 @default.
- W3011353843 cites W1998848824 @default.
- W3011353843 cites W2000211485 @default.
- W3011353843 cites W2001290654 @default.
- W3011353843 cites W2007191505 @default.
- W3011353843 cites W2011899617 @default.
- W3011353843 cites W2012411661 @default.
- W3011353843 cites W2013347423 @default.
- W3011353843 cites W2017564082 @default.
- W3011353843 cites W2025379266 @default.
- W3011353843 cites W202549846 @default.
- W3011353843 cites W2027264377 @default.
- W3011353843 cites W2028361884 @default.
- W3011353843 cites W2034141121 @default.
- W3011353843 cites W2037458136 @default.
- W3011353843 cites W2044541573 @default.
- W3011353843 cites W2045155179 @default.
- W3011353843 cites W2048963903 @default.
- W3011353843 cites W2049064507 @default.
- W3011353843 cites W2050048452 @default.
- W3011353843 cites W2056672182 @default.
- W3011353843 cites W2060416503 @default.
- W3011353843 cites W2065895297 @default.
- W3011353843 cites W2070012525 @default.
- W3011353843 cites W2073498690 @default.
- W3011353843 cites W2074368028 @default.
- W3011353843 cites W2077931120 @default.
- W3011353843 cites W2079170011 @default.
- W3011353843 cites W2079699097 @default.
- W3011353843 cites W2087448796 @default.
- W3011353843 cites W2092325779 @default.
- W3011353843 cites W2092992912 @default.
- W3011353843 cites W2094522981 @default.
- W3011353843 cites W2095421430 @default.
- W3011353843 cites W2101756213 @default.
- W3011353843 cites W2104795449 @default.
- W3011353843 cites W2131383292 @default.
- W3011353843 cites W2151005682 @default.
- W3011353843 cites W2157812230 @default.
- W3011353843 cites W2183263888 @default.
- W3011353843 cites W2297361841 @default.
- W3011353843 cites W2320080910 @default.
- W3011353843 cites W2329386575 @default.
- W3011353843 cites W2334068147 @default.
- W3011353843 cites W2343122406 @default.
- W3011353843 cites W2404333965 @default.
- W3011353843 cites W2416565258 @default.
- W3011353843 cites W2506493882 @default.
- W3011353843 cites W2549412989 @default.
- W3011353843 cites W2560767845 @default.
- W3011353843 cites W2562719976 @default.
- W3011353843 cites W2605157945 @default.
- W3011353843 cites W2615339526 @default.
- W3011353843 cites W2621088953 @default.
- W3011353843 cites W2725703423 @default.
- W3011353843 cites W2725820344 @default.
- W3011353843 cites W2750980651 @default.
- W3011353843 cites W2753284738 @default.
- W3011353843 cites W2793482648 @default.
- W3011353843 cites W2800287019 @default.
- W3011353843 cites W2802620534 @default.
- W3011353843 cites W2808525353 @default.
- W3011353843 cites W2890088037 @default.
- W3011353843 cites W2966397899 @default.
- W3011353843 cites W2979468668 @default.
- W3011353843 cites W4205943019 @default.
- W3011353843 cites W4239487159 @default.
- W3011353843 cites W4251961599 @default.
- W3011353843 cites W4364851857 @default.
- W3011353843 cites W646941476 @default.
- W3011353843 cites W2093772703 @default.
- W3011353843 doi "https://doi.org/10.1016/j.precisioneng.2020.03.004" @default.
- W3011353843 hasPublicationYear "2020" @default.
- W3011353843 type Work @default.
- W3011353843 sameAs 3011353843 @default.
- W3011353843 citedByCount "28" @default.
- W3011353843 countsByYear W30113538432020 @default.