Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011361325> ?p ?o ?g. }
- W3011361325 endingPage "343" @default.
- W3011361325 startingPage "309" @default.
- W3011361325 abstract "The nth cyclotomic polynomial Φn(x) is the minimal polynomial of an nth primitive root of unity. Its coefficients are the subject of intensive study and some formulas are known for them. Here we are interested in formulas which are valid for all natural numbers n. In these a host of famous number theoretical objects such as Bernoulli numbers, Stirling numbers of both kinds and Ramanujan sums make their appearance, sometimes even at the same time! In this paper we present a survey of these formulas which until now were scattered in the literature, and introduce a unified approach to derive some of them, leading also to shorter proofs as a by-product. In particular, we show that some of the formulas have a more elegant reinterpretation in terms of Bell polynomials. This approach amounts to computing the logarithmic derivatives of Φn at certain points. Furthermore, we show that the logarithmic derivatives at ±1 of any Kronecker polynomial (a monic product of cyclotomic polynomials and a monomial) satisfy a family of linear equations whose coefficients are Stirling numbers of the second kind. We apply these equations to show that certain polynomials are not Kronecker. In particular, we infer that for every k≥4 there exists a symmetric numerical semigroup with embedding dimension k and Frobenius number 2k+1 that is not cyclotomic, thus establishing a conjecture of Alexandru Ciolan, Pedro García-Sánchez and the second author. In an appendix Pedro García-Sánchez shows that for every k≥4 there exists a symmetric non-cyclotomic numerical semigroup having Frobenius number 2k+1." @default.
- W3011361325 created "2020-03-23" @default.
- W3011361325 creator A5009645792 @default.
- W3011361325 creator A5013437613 @default.
- W3011361325 date "2021-09-01" @default.
- W3011361325 modified "2023-10-09" @default.
- W3011361325 title "Coefficients and higher order derivatives of cyclotomic polynomials: Old and new" @default.
- W3011361325 cites W1976826246 @default.
- W3011361325 cites W1990982788 @default.
- W3011361325 cites W2000624298 @default.
- W3011361325 cites W2002564989 @default.
- W3011361325 cites W2002980091 @default.
- W3011361325 cites W2005567558 @default.
- W3011361325 cites W2029224825 @default.
- W3011361325 cites W2039409450 @default.
- W3011361325 cites W2039892942 @default.
- W3011361325 cites W2043091061 @default.
- W3011361325 cites W2064908122 @default.
- W3011361325 cites W2078871971 @default.
- W3011361325 cites W2093313826 @default.
- W3011361325 cites W2129340039 @default.
- W3011361325 cites W2246789780 @default.
- W3011361325 cites W2317493300 @default.
- W3011361325 cites W2403670861 @default.
- W3011361325 cites W2800141024 @default.
- W3011361325 cites W2951092586 @default.
- W3011361325 cites W2962706819 @default.
- W3011361325 cites W2963383777 @default.
- W3011361325 cites W2963441604 @default.
- W3011361325 cites W2963460305 @default.
- W3011361325 cites W2963626730 @default.
- W3011361325 cites W2963679706 @default.
- W3011361325 cites W2973722608 @default.
- W3011361325 doi "https://doi.org/10.1016/j.exmath.2019.07.003" @default.
- W3011361325 hasPublicationYear "2021" @default.
- W3011361325 type Work @default.
- W3011361325 sameAs 3011361325 @default.
- W3011361325 citedByCount "12" @default.
- W3011361325 countsByYear W30113613252020 @default.
- W3011361325 countsByYear W30113613252021 @default.
- W3011361325 countsByYear W30113613252022 @default.
- W3011361325 crossrefType "journal-article" @default.
- W3011361325 hasAuthorship W3011361325A5009645792 @default.
- W3011361325 hasAuthorship W3011361325A5013437613 @default.
- W3011361325 hasBestOaLocation W30113613252 @default.
- W3011361325 hasConcept C10138342 @default.
- W3011361325 hasConcept C114614502 @default.
- W3011361325 hasConcept C118615104 @default.
- W3011361325 hasConcept C121332964 @default.
- W3011361325 hasConcept C134306372 @default.
- W3011361325 hasConcept C162324750 @default.
- W3011361325 hasConcept C163635466 @default.
- W3011361325 hasConcept C182306322 @default.
- W3011361325 hasConcept C202444582 @default.
- W3011361325 hasConcept C206343339 @default.
- W3011361325 hasConcept C2524010 @default.
- W3011361325 hasConcept C2780990831 @default.
- W3011361325 hasConcept C33923547 @default.
- W3011361325 hasConcept C62520636 @default.
- W3011361325 hasConcept C76253118 @default.
- W3011361325 hasConcept C84114770 @default.
- W3011361325 hasConcept C90119067 @default.
- W3011361325 hasConcept C90673727 @default.
- W3011361325 hasConceptScore W3011361325C10138342 @default.
- W3011361325 hasConceptScore W3011361325C114614502 @default.
- W3011361325 hasConceptScore W3011361325C118615104 @default.
- W3011361325 hasConceptScore W3011361325C121332964 @default.
- W3011361325 hasConceptScore W3011361325C134306372 @default.
- W3011361325 hasConceptScore W3011361325C162324750 @default.
- W3011361325 hasConceptScore W3011361325C163635466 @default.
- W3011361325 hasConceptScore W3011361325C182306322 @default.
- W3011361325 hasConceptScore W3011361325C202444582 @default.
- W3011361325 hasConceptScore W3011361325C206343339 @default.
- W3011361325 hasConceptScore W3011361325C2524010 @default.
- W3011361325 hasConceptScore W3011361325C2780990831 @default.
- W3011361325 hasConceptScore W3011361325C33923547 @default.
- W3011361325 hasConceptScore W3011361325C62520636 @default.
- W3011361325 hasConceptScore W3011361325C76253118 @default.
- W3011361325 hasConceptScore W3011361325C84114770 @default.
- W3011361325 hasConceptScore W3011361325C90119067 @default.
- W3011361325 hasConceptScore W3011361325C90673727 @default.
- W3011361325 hasFunder F4320323834 @default.
- W3011361325 hasIssue "3" @default.
- W3011361325 hasLocation W30113613251 @default.
- W3011361325 hasLocation W30113613252 @default.
- W3011361325 hasLocation W30113613253 @default.
- W3011361325 hasOpenAccess W3011361325 @default.
- W3011361325 hasPrimaryLocation W30113613251 @default.
- W3011361325 hasRelatedWork W1991620671 @default.
- W3011361325 hasRelatedWork W2002564989 @default.
- W3011361325 hasRelatedWork W2011142789 @default.
- W3011361325 hasRelatedWork W2032831677 @default.
- W3011361325 hasRelatedWork W2067426947 @default.
- W3011361325 hasRelatedWork W2553915590 @default.
- W3011361325 hasRelatedWork W2921449913 @default.
- W3011361325 hasRelatedWork W2963441604 @default.
- W3011361325 hasRelatedWork W4302087514 @default.
- W3011361325 hasRelatedWork W70023776 @default.