Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011364549> ?p ?o ?g. }
- W3011364549 endingPage "4826" @default.
- W3011364549 startingPage "4817" @default.
- W3011364549 abstract "Timely and efficient air traffic flow management (ATFM) is a key issue in future dense air traffic. The emerging demands for unmanned aerial vehicles and general aviation aircraft aggravate the burden of the ATFM. Thanks to the advanced automatic dependent surveillance-broadcast (ADS-B) technique, the aerial vehicles can be tracked and monitored in a real-time and accurate manner, providing possibility for establishing a more intelligent ATFM architecture. In this article, we first form an aviation Big Data platform by using the distributed ADS-B ground stations and the obtained ADS-B messages. By exploring the constructed dataset and mapping the extracted information to the routes, the air traffic flow between different cities can be counted and predicted, where the prediction task is implemented on the basis of two machine learning methods, respectively. The experimental results based on real-world data demonstrate that the proposed traffic flow prediction model adopting long short-term memory (LSTM) can achieve better performance, especially when abnormal factors in traffic control are considered." @default.
- W3011364549 created "2020-03-23" @default.
- W3011364549 creator A5027367677 @default.
- W3011364549 creator A5033073898 @default.
- W3011364549 creator A5040545966 @default.
- W3011364549 creator A5052697795 @default.
- W3011364549 creator A5074679034 @default.
- W3011364549 date "2020-05-01" @default.
- W3011364549 modified "2023-09-30" @default.
- W3011364549 title "Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data" @default.
- W3011364549 cites W1689711448 @default.
- W3011364549 cites W1982535910 @default.
- W3011364549 cites W1983090150 @default.
- W3011364549 cites W1985258458 @default.
- W3011364549 cites W1987728022 @default.
- W3011364549 cites W2038250306 @default.
- W3011364549 cites W2040382413 @default.
- W3011364549 cites W2044221688 @default.
- W3011364549 cites W2055836897 @default.
- W3011364549 cites W2069929199 @default.
- W3011364549 cites W2115294291 @default.
- W3011364549 cites W2118756516 @default.
- W3011364549 cites W2133573607 @default.
- W3011364549 cites W2148619644 @default.
- W3011364549 cites W2170785963 @default.
- W3011364549 cites W2191329106 @default.
- W3011364549 cites W2318004685 @default.
- W3011364549 cites W2525841751 @default.
- W3011364549 cites W2541793999 @default.
- W3011364549 cites W2566425973 @default.
- W3011364549 cites W2587852628 @default.
- W3011364549 cites W2597178872 @default.
- W3011364549 cites W2605620338 @default.
- W3011364549 cites W2607268008 @default.
- W3011364549 cites W2617931713 @default.
- W3011364549 cites W2620303912 @default.
- W3011364549 cites W2744840333 @default.
- W3011364549 cites W2746554716 @default.
- W3011364549 cites W2770129264 @default.
- W3011364549 cites W2802424562 @default.
- W3011364549 cites W2808139755 @default.
- W3011364549 cites W2808769300 @default.
- W3011364549 cites W2894577781 @default.
- W3011364549 cites W2896666719 @default.
- W3011364549 cites W2902952649 @default.
- W3011364549 cites W2905428925 @default.
- W3011364549 cites W2911559398 @default.
- W3011364549 cites W2912556816 @default.
- W3011364549 cites W2914635966 @default.
- W3011364549 cites W2916238263 @default.
- W3011364549 cites W2919467785 @default.
- W3011364549 cites W2927719797 @default.
- W3011364549 cites W2941560784 @default.
- W3011364549 cites W2943466984 @default.
- W3011364549 cites W2953596346 @default.
- W3011364549 cites W2955500388 @default.
- W3011364549 cites W2975128548 @default.
- W3011364549 cites W2978172742 @default.
- W3011364549 cites W2981598692 @default.
- W3011364549 cites W2987656958 @default.
- W3011364549 cites W2998266342 @default.
- W3011364549 cites W3003174479 @default.
- W3011364549 cites W3122775348 @default.
- W3011364549 cites W3123784868 @default.
- W3011364549 cites W2751650042 @default.
- W3011364549 doi "https://doi.org/10.1109/tvt.2020.2981959" @default.
- W3011364549 hasPublicationYear "2020" @default.
- W3011364549 type Work @default.
- W3011364549 sameAs 3011364549 @default.
- W3011364549 citedByCount "63" @default.
- W3011364549 countsByYear W30113645492020 @default.
- W3011364549 countsByYear W30113645492021 @default.
- W3011364549 countsByYear W30113645492022 @default.
- W3011364549 countsByYear W30113645492023 @default.
- W3011364549 crossrefType "journal-article" @default.
- W3011364549 hasAuthorship W3011364549A5027367677 @default.
- W3011364549 hasAuthorship W3011364549A5033073898 @default.
- W3011364549 hasAuthorship W3011364549A5040545966 @default.
- W3011364549 hasAuthorship W3011364549A5052697795 @default.
- W3011364549 hasAuthorship W3011364549A5074679034 @default.
- W3011364549 hasBestOaLocation W30113645492 @default.
- W3011364549 hasConcept C124101348 @default.
- W3011364549 hasConcept C127413603 @default.
- W3011364549 hasConcept C146978453 @default.
- W3011364549 hasConcept C166961238 @default.
- W3011364549 hasConcept C178802073 @default.
- W3011364549 hasConcept C22212356 @default.
- W3011364549 hasConcept C41008148 @default.
- W3011364549 hasConcept C67186912 @default.
- W3011364549 hasConcept C74448152 @default.
- W3011364549 hasConcept C75684735 @default.
- W3011364549 hasConcept C77088390 @default.
- W3011364549 hasConceptScore W3011364549C124101348 @default.
- W3011364549 hasConceptScore W3011364549C127413603 @default.
- W3011364549 hasConceptScore W3011364549C146978453 @default.
- W3011364549 hasConceptScore W3011364549C166961238 @default.
- W3011364549 hasConceptScore W3011364549C178802073 @default.
- W3011364549 hasConceptScore W3011364549C22212356 @default.