Matches in SemOpenAlex for { <https://semopenalex.org/work/W3011366231> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3011366231 abstract "In solving real-world problems like changing healthcare-seeking behaviors, designing interventions to improve downstream outcomes requires an understanding of the causal links within the system. Causal Bayesian Networks (BN) have been proposed as one such powerful method. In real-world applications, however, confidence in the results of BNs are often moderate at best. This is due in part to the inability to validate against some ground truth, as the DAG is not available. This is especially problematic if the learned DAG conflicts with pre-existing domain doctrine. At the policy level, one must justify insights generated by such analysis, preferably accompanying them with uncertainty estimation. Here we propose a causal extension to the datasheet concept proposed by Gebru et al (2018) to include approximate BN performance expectations for any given dataset. To generate the results for a prototype Causal Datasheet, we constructed over 30,000 synthetic datasets with properties mirroring characteristics of real data. We then recorded the results given by state-of-the-art structure learning algorithms. These results were used to populate the Causal Datasheet, and recommendations were automatically generated dependent on expected performance. As a proof of concept, we used our Causal Datasheet Generation Tool (CDG-T) to assign expected performance expectations to a maternal health survey we conducted in Uttar Pradesh, India." @default.
- W3011366231 created "2020-03-23" @default.
- W3011366231 creator A5010062469 @default.
- W3011366231 creator A5010679444 @default.
- W3011366231 creator A5021434291 @default.
- W3011366231 creator A5048329526 @default.
- W3011366231 creator A5057320116 @default.
- W3011366231 creator A5091103863 @default.
- W3011366231 date "2020-03-12" @default.
- W3011366231 modified "2023-09-27" @default.
- W3011366231 title "Causal datasheet: An approximate guide to practically assess Bayesian networks in the real world." @default.
- W3011366231 cites W1505477995 @default.
- W3011366231 cites W1547246444 @default.
- W3011366231 cites W1575365184 @default.
- W3011366231 cites W2012639032 @default.
- W3011366231 cites W2142857211 @default.
- W3011366231 cites W2143891888 @default.
- W3011366231 cites W2339500526 @default.
- W3011366231 cites W2795038878 @default.
- W3011366231 cites W2798860224 @default.
- W3011366231 cites W2801019787 @default.
- W3011366231 cites W2801890059 @default.
- W3011366231 cites W2889150342 @default.
- W3011366231 cites W2921518676 @default.
- W3011366231 cites W2949717426 @default.
- W3011366231 cites W2970909257 @default.
- W3011366231 cites W4123081 @default.
- W3011366231 hasPublicationYear "2020" @default.
- W3011366231 type Work @default.
- W3011366231 sameAs 3011366231 @default.
- W3011366231 citedByCount "0" @default.
- W3011366231 crossrefType "posted-content" @default.
- W3011366231 hasAuthorship W3011366231A5010062469 @default.
- W3011366231 hasAuthorship W3011366231A5010679444 @default.
- W3011366231 hasAuthorship W3011366231A5021434291 @default.
- W3011366231 hasAuthorship W3011366231A5048329526 @default.
- W3011366231 hasAuthorship W3011366231A5057320116 @default.
- W3011366231 hasAuthorship W3011366231A5091103863 @default.
- W3011366231 hasConcept C111919701 @default.
- W3011366231 hasConcept C119857082 @default.
- W3011366231 hasConcept C154945302 @default.
- W3011366231 hasConcept C2781384022 @default.
- W3011366231 hasConcept C33724603 @default.
- W3011366231 hasConcept C41008148 @default.
- W3011366231 hasConceptScore W3011366231C111919701 @default.
- W3011366231 hasConceptScore W3011366231C119857082 @default.
- W3011366231 hasConceptScore W3011366231C154945302 @default.
- W3011366231 hasConceptScore W3011366231C2781384022 @default.
- W3011366231 hasConceptScore W3011366231C33724603 @default.
- W3011366231 hasConceptScore W3011366231C41008148 @default.
- W3011366231 hasLocation W30113662311 @default.
- W3011366231 hasOpenAccess W3011366231 @default.
- W3011366231 hasPrimaryLocation W30113662311 @default.
- W3011366231 hasRelatedWork W1486749529 @default.
- W3011366231 hasRelatedWork W1511711598 @default.
- W3011366231 hasRelatedWork W1978072419 @default.
- W3011366231 hasRelatedWork W2215095325 @default.
- W3011366231 hasRelatedWork W2345391979 @default.
- W3011366231 hasRelatedWork W2353918425 @default.
- W3011366231 hasRelatedWork W2401795200 @default.
- W3011366231 hasRelatedWork W2786015885 @default.
- W3011366231 hasRelatedWork W2921518676 @default.
- W3011366231 hasRelatedWork W2941033546 @default.
- W3011366231 hasRelatedWork W2948918631 @default.
- W3011366231 hasRelatedWork W2963521770 @default.
- W3011366231 hasRelatedWork W2991266623 @default.
- W3011366231 hasRelatedWork W2994363832 @default.
- W3011366231 hasRelatedWork W3008419542 @default.
- W3011366231 hasRelatedWork W3011148642 @default.
- W3011366231 hasRelatedWork W3089987687 @default.
- W3011366231 hasRelatedWork W3101363188 @default.
- W3011366231 hasRelatedWork W3152867570 @default.
- W3011366231 hasRelatedWork W3204049796 @default.
- W3011366231 isParatext "false" @default.
- W3011366231 isRetracted "false" @default.
- W3011366231 magId "3011366231" @default.
- W3011366231 workType "article" @default.